For the chemical reactiom to be at equilibrium:
1- The rate of forward reaction must be equal to the rate of the reverse reaction.
2- The mass of EACH element must be equal before and after the reaction (no NET change in mass), otherwise the equilibrium will shift.
Important note: you need to check the mass of each element before and after the reaction (i.e, reactants side and products side) and the not the mass of the system as a whole. This is because the mass of the whole system will be preserved whether the system is at equilibrium or not (this is the fundamental law of mass conservation)
Answer:
Explanation:
H3PO4(aq) + 3NaOH(aq) → Na3PO4(aq) + 3H2O(l)
mole of NaOH = 23.6 * 10 ⁻³L * 0.2M
= 0.00472mole
let x be the no of mole of H3PO4 required of 0.00472mole of NaOH
3 mole of NaOH required ------- 1 mole of H3PO4
0.00472mole of NaOH ----------x
cross multiply
3x = 0.0472
x = 0.00157mole
[H3PO4] = mole of H3PO4 / Vol. of H3PO4
= 0.00157mole / (10*10⁻³l)
= 0.157M
<h3>The concentration of unknown phosphoric acid is 0.157M</h3>
Answer:
<h3>Don't know..</h3>
follow me and mark me brainliest
Answer: 1800 L
Explanation:
Given that,
Original pressure of gas (P1) = 180 kPa
Original volume of gas (V1) = 1500 L
New pressure of gas (P2) = 150 kPa
New volume of gas (V2) = ?
Since pressure and volume are given while temperature is held constant, apply the formula for Boyle's law
P1V1 = P1V2
180 kPa x 1500 L = 150 kPa x V2
270000 kPa•L = 150 kPa•V2
Divide both sides by 150 kPa
270000 kPa•L/150 kPa = 150 kPa•V2/150 kPa
1800L = V2
Thus, the new volume of the gas is 1800 liters.
Answer:
1 mol
Explanation:
The mass of CoCl2 is 129.83. 130 divided by the mass is 1. This is to convert the mass given to mols that exist in the sample.