Answer: option C. HF
Explanation: A polar bond is a covalent bond between two atoms where the electrons forming the bond are unequally distributed. Fluorine is more electronegative than hydrogen so the electrons in the bond are more closely associated with the fluorine atom than with the hydrogen atom.
Answer:
the nucleus is the center of the atom, made up of protons and neutrons, without the nucleus you'd just have a bunch of electrons floating around; the nucleus is positively charged
protons are the positively charged particles that sit within the nucleus
neutrons are particles of no charge that sit within the nucleus, and because they have no charge, they do not cancel out the positive charge of the protons, making the nucleus positive
electrons are negatively charged particles that float around the nucleus in an area known as the electron cloud, they orbit around the nucleus because they are attracted to the positive charge of the nucleus (caused by the protons), with charges, opposites attract
Explanation:
Answer:
I can be a friend if u need
Answer:
0.21 M. (2 sig. fig.)
Explanation:
The molarity of a solution is the number of moles of the solute in each liter of the solution. The unit for molarity is M. One M equals to one mole per liter.
How many moles of NaOH in the original solution?
,
where
is the number of moles of the solute in the solution.
is the concentration of the solution.
for the initial solution.
is the volume of the solution. For the initial solution,
for the initial solution.
.
What's the concentration of the diluted solution?
.
is the number of solute in the solution. Diluting the solution does not influence the value of
.
for the diluted solution.- Volume of the diluted solution:
.
Concentration of the diluted solution:
.
The least significant number in the question comes with 2 sig. fig. Keep more sig. fig. than that in calculations but round the final result to 2 sig. fig. Hence the result: 0.021 M.
Answer:
B. liquid to gas
Explanation:
Matter exists in 3 different states:
- Solid: in solids, particles in the substance are tightly bond to each other through strong intermolecular forces. Therefore, they can only vibrate around their fixed position, but they cannot move freely: as a result, the distance between the particles is the smallest among the 3 states of matter.
- Liquid: in a liquid, particles are able to slide past each other, however there are still intermolecular forces keeping them not too far from each other. As a result, in liquids, particles are on average more distance from each other compared to solids.
- Gas: in a gas, particles are completely free to move, as the intermolecular forces between them are negligible. As a result, in gases, the distance between molecules is the greatest, compared with solids and liquids.
Therefore, the phase changes in which the average distance between molecules increases is:
B. liquid to gas