The amount of energy released when 0.06 kg of mercury condenses at the same temperature can be calculated using its latent heat of fusion which is the opposite of melting. Latent heat of fusion and melting can be used because they have the same magnitude, but opposite signs. Latent heat is the amount of energy required to change the state or phase of a substance. For latent heat, there is no temperature change. The equation is:
E = m(ΔH)
where:
m = mass of substance
ΔH = latent heat of fusion or melting
According to data, the ΔH of mercury is approximately 11.6 kJ/kg.
E = 0.06kg (11.6 kJ/kg) = 0.696 kJ or 696 J
The answer is D. 697.08 J. Note that small differences could be due to rounding off or different data sources.
Answer: D is the answer since it is the product of this equation
Explanation: HOPE I AM RIGHT AND IT HELPS!!!
need more explanation feel free to comment in the comment box
Answer:
Synthesis Reaction
Explanation:
It is a synthesis Reaction because it is taking little reactants and forming a big product!
Answer:
Equation of reaction:
a) 2HCl + Ba(OH)2 ==> CaCl2 + 2H2O
b) Molarity of base = 0.042 M.
Explanation:
Using titration equation
CAVA/CBVB = NA/NB
Where NA is the number of mole of acid = 2
NB is the number of mole of base = 1
CA is the molarity of acid =0.15M
CB is the molarity of base = to be calculated
VA is the volume of acid = 25 ml
VB is the volume of base = 44.45mL
Substituting
0.15×25/CB×44.45 = 2/1
Therefore CB =0.15×25×1/44.45×2
CB = 0.042 M.
Number of moles in the K2SO4 sample
= (16/1000)*1.04= 0.01664 mol
Number of moles in the Ba(NO3)2 sample
= (14.3/1000*0.880)= 0.01258 mol
Since the reaction is a 1:1 ratio between the two reactants, the limiting reagent is the one containing a smaller number of moles, namely Ba(NO3)2.
The molecular mass of BaSO4 is 137.3+(32.06+4*16.00)=233.4
Therefore the theoretical yield of Barium Sulphate is
233.4*0.01258=2.937 g
Actual yield = 2.60 g (given)
Therefore the percentage yield = 2.60/2.937=88.54%
Answer:
1. the limiting reagent is Barium Nitrate (Ba(NO3)2)
2. the theoretical yield is 2.94 g
3. the percentage yield is 88.5%
I apologize for the mistake previous to this update.