The answer is : Evaporation
The value of the angle of the incline

at which the block starts to slide is the angle at which the component of the weight parallel to the incline becomes equal to the frictional force that keeps the block on the incline:

where the term on the left is the component of the weight parallel to the incline, and the term on the right is the frictional force, which is the product between the coefficient of friction

and the normal reaction of the incline N.
The normal reaction of the incline, N, is equal to the component of the weight perpendicular to the incline:

Therefore, the initial equation becomes

From which we find


For angles above this value, the block will start sliding down, otherwise the block will stay on the incline.
It takes work to push charge through a change of potential.
There's no change of potential along an equipotential path,
so that path doesn't require any work.
Answer:
La escala del termómetro ''A'' es grados Celsius.
La escala del termómetro ''B'' es grados Fahrenheit.
Explanation:
Para hallar en qué escalas están los termómetros partimos de que la mezcla a la cuál se midió su temperatura mantuvo su temperatura constante.
Esto quiere decir que los termómetros están expresando la misma temperatura pero en una escala distinta.
Sabemos que dada una temperatura en grados Celsius ''C'' si la queremos convertir a grados Fahrenheit ''F'' debemos utilizar la siguiente ecuación :
(I)
Ahora, si reemplazamos y asumimos que la temperatura de 18° es en grados Celsius, entonces si reemplazamos
en la ecuación (I) deberíamos obtener
⇒

Efectivamente obtenemos el valor esperado. Finalmente, corroboramos que la temperatura del termómetro ''A'' está medida en grados Celsius y la temperatura del termómetro ''B'' en grados Fahrenheit.
Answer:
37.5 N Hard
Explanation:
Hook's law: The force applied to an elastic material is directly proportional to the extension provided the elastic limit of the material is not exceeded.
Using the expression for hook's law,
F = ke.............. Equation 1
F = Force of the athlete, k = force constant of the spring, e = extension/compression of the spring.
Given: k = 750 N/m, e = 5.0 cm = 0.05 m
Substitute into equation 1
F = 750(0.05)
F = 37.5 N
Hence the athlete is pushing 37.5 N hard