Answer:
boiling point elevation - colligative property
color - non-colligative property
freezing point depression - colligative property
vapor pressure lowering - colligative property
density - non-colligative property
Explanation:
A colligative property is a property that depends on the number of particles present in the system.
Freezing point depression, boiling point elevation and vapour pressure lowering are all colligative properties of solutions.
Colour and density do not depend on the number of particles present hence they are not colligative properties.
V1 = 2.00 L
<span>T1 = 25 + 273 = 298 K </span>
<span>V2 = 6.00 L </span>
<span>T2 = ? </span>
<span>Assuming the pressure is to remain constant, then </span>
<span>V1/T1 = V2/T2 </span>
<span>T2 = T1V2/V1 = (298)(6)/(2) = 894 deg K</span>
Answer:
A) 20
B) 40
C) Ca
D) 10
E) 9
F) F
Explanation:
The MASS NUMBER is the number of protons + the number of neutrons.
The ATOMIC NUMBER is the number of protons.
You can take the MASS NUMBER - ATOMIC NUMBER = NUMBER OF NEUTRONS.
Each element is unique and distinguished by the NUMBER OF PROTONS = ATOMIC NUMBER, ie...the number of protons in its nucleus. You can find the element's name and symbol on the Periodic Table.
Given the solubility of strontium arsenate is 0.0480 g/l . we have to convert it into mol/L by dividing it over molar mass (540.7 g/mol)
Molar solubility = 0.0480 / 540.7 = 8.9 x 10⁻⁵ mol/L
Dissociation equation:
Sr₃(AsO₄)₂(s) → 3 Sr²⁺(aq) + 2 AsO₄³⁻(aq)
3 s 2 s
Ksp = [Sr²⁺]³ [AsO₄³⁻]²
= (3s)³ (2s)²
= 108 s⁵
Ksp = 108 (8.9 x 10⁻⁵) = 5.95 x 10⁻¹⁹