Answer:
c = 0.07 j/g.k
Explanation:
Given data:
Mass of sample = 35 g
Heat absorbed = 48 j
Initial temperature = 293 K
Final temperature = 313 K
Specific heat of substance = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = Final temperature - initial temperature
ΔT = 313 k - 293 K
ΔT = 20 k
Now we will put the values in formula.
48 j = 35 g × c× 20 k
48 j = 700 g.k ×c
c = 48 j/700 g.k
c = 0.07 j/g.k
Answer:
B
Explanation:
Shows actual sacrifice in order to train and be the best.
Answer:
=1.666 liters
Explanation:
1 mole of a has at standard temperature and pressure occupies a volume of 22.4 liters.
0.5 moles of nitrogen occupy a volume of (0.5 moles×22.4 dm³/mol)/ 1
=11.2 liters.
Standard pressure= 1 atmosphere (Atm)
Standard temperature = 273.15 Kelvin
According to Combined gas equation, P₁V₁/T₁=P₂V₂/T₂
Let us take the conditions under standard conditions as the reference, with the subscript 1 and the conditions under the 5L container to be scenario 2 with subscript 2.
Therefore P₂ =P₁V₁T₂/T₁V₂
Substituting for the values we get:
P₂= (1 atm× 11.2L ×203K)/ (273K×5L)
=1.666 atm
Answer:
Renewable energy
Explanation:
on the other hand, typically emits less CO2 than fossil fuels. In fact, renewables like solar and wind power—apart from construction and maintenance—don't emit any CO2 at all. With renewable energy, you can breathe easier, stay cooler, and create a more comfortable world for generations to come.
1) 1.8 micrograms(least)
2) 1.8 grams
3) 1.8 kilograms(greatest)