Answer:
<em>1</em><em>1</em><em>.</em><em>8</em><em> </em><em>uni</em><em>ts</em>
Step-by-step explanation:
<em>The circle equation is given as:</em>
<em>The circle equation is given as:(x - 2)^2 + (y + 6)^2 = 35</em>
<em>The circle equation is given as:(x - 2)^2 + (y + 6)^2 = 35A circle equation is represented as:</em>
<em>The circle equation is given as:(x - 2)^2 + (y + 6)^2 = 35A circle equation is represented as:(x - a)^2 + (y - b)^2 = r^2</em>
<em>The circle equation is given as:(x - 2)^2 + (y + 6)^2 = 35A circle equation is represented as:(x - a)^2 + (y - b)^2 = r^2Where</em>
<em>The circle equation is given as:(x - 2)^2 + (y + 6)^2 = 35A circle equation is represented as:(x - a)^2 + (y - b)^2 = r^2WhereDiameter = 2r</em>
<em>The circle equation is given as:(x - 2)^2 + (y + 6)^2 = 35A circle equation is represented as:(x - a)^2 + (y - b)^2 = r^2WhereDiameter = 2rBy comparing both equations, we have</em>
<em>The circle equation is given as:(x - 2)^2 + (y + 6)^2 = 35A circle equation is represented as:(x - a)^2 + (y - b)^2 = r^2WhereDiameter = 2rBy comparing both equations, we haver^2 = 35</em>
<em>The circle equation is given as:(x - 2)^2 + (y + 6)^2 = 35A circle equation is represented as:(x - a)^2 + (y - b)^2 = r^2WhereDiameter = 2rBy comparing both equations, we haver^2 = 35Take the square root of both sides</em>
<em>The circle equation is given as:(x - 2)^2 + (y + 6)^2 = 35A circle equation is represented as:(x - a)^2 + (y - b)^2 = r^2WhereDiameter = 2rBy comparing both equations, we haver^2 = 35Take the square root of both sidesr = 5.9</em>
<em>The circle equation is given as:(x - 2)^2 + (y + 6)^2 = 35A circle equation is represented as:(x - a)^2 + (y - b)^2 = r^2WhereDiameter = 2rBy comparing both equations, we haver^2 = 35Take the square root of both sidesr = 5.9Multiply by 2</em>
<em>The circle equation is given as:(x - 2)^2 + (y + 6)^2 = 35A circle equation is represented as:(x - a)^2 + (y - b)^2 = r^2WhereDiameter = 2rBy comparing both equations, we haver^2 = 35Take the square root of both sidesr = 5.9Multiply by 22r = 11.8</em>
<em>The circle equation is given as:(x - 2)^2 + (y + 6)^2 = 35A circle equation is represented as:(x - a)^2 + (y - b)^2 = r^2WhereDiameter = 2rBy comparing both equations, we haver^2 = 35Take the square root of both sidesr = 5.9Multiply by 22r = 11.8Hence, the diameter of the circle is 11.8 units</em>