Answer:
The net force acting on the object is doubled while the mass of the object is held constant. What will be the new acceleration? An object has an acceleration of 12.0 m/s^2. The net force acting on the object is halved (decreased to one half its original value) while the mass of the object is held constant.
The first three harmonics of the string are 131.8 Hz, 263.6 Hz and 395.4 Hz.
<h3>
Velocity of the wave</h3>
The velocity of the wave is calculated as follows;
v = √T/μ
where;
- T is tension
- μ is mass per unit length = 2 g/m = 0.002 kg/m
v = √(50/0.002)
v = 158.1 m/s
<h3>First harmonic or fundamental frequency of the wave</h3>
f₀ = v/λ
where;
f₀ = v/2L
f₀ = 158.1/(2 x 0.6)
f₀ = 131.8 Hz
<h3>Second harmonic of the wave</h3>
f₁ = 2f₀
f₁ = 2(131.8 Hz)
f₁ = 263.6 Hz
<h3>Third harmonic of the wave</h3>
f₂ = 3f₀
f₂ = 3(131.8 Hz)
f₂ = 395.4 Hz
Thus, the first three harmonics of the string are 131.8 Hz, 263.6 Hz and 395.4 Hz.
Learn more about harmonics here: brainly.com/question/4290297
#SPJ1
As per kinematics equation we are given that

now we are given that
a = 2.55 m/s^2


now we need to find x
from above equation we have



so it will cover a distance of 93.2 m
We will determine the wavelength through the relationship given by the distance between slits, this relationship is given under the function

Here,
m = Number of order bright fringe
= Wavelength
d = Distance between slits
Both distance are the same, then



Rearranging to find the second wavelength




Therefore the wavelength of the light coming from the second monochromatic light source is 550.3nm
Angular acceleration is simply the ratio of the Torque
over the rotation inertia, that is:
Angular acceleration = Torque / Rotational inertia
So substituting the values:
Angular acceleration = 2.4 N m / 4.0 kg m2
<span>Angular acceleration = 0.7 rad/s^2</span>