Answer:
84 protons and 128 neutron
Answer:
Second drop: 1.04 m
First drop: 1.66 m
Explanation:
Assuming the droplets are not affected by aerodynamic drag.
They are in free fall, affected only by gravity.
I set a frame of reference with the origin at the nozzle and the positive X axis pointing down.
We can use the equation for position under constant acceleration.
X(t) = x0 + v0 * t + 1/2 * a *t^2
x0 = 0
a = 9.81 m/s^2
v0 = 0
Then:
X(t) = 4.9 * t^2
The drop will hit the floor when X(t) = 1.9
1.9 = 4.9 * t^2
t^2 = 1.9 / 4.9

That is the moment when the 4th drop begins falling.
Assuming they fall at constant interval,
Δt = 0.62 / 3 = 0.2 s (approximately)
The second drop will be at:
X2(0.62) = 4.9 * (0.62 - 1*0.2)^2 = 0.86 m
And the third at:
X3(0.62) = 4.9 * (0.62 - 2*0.2)^2 = 0.24 m
The positions are:
1.9 - 0.86 = 1.04 m
1.9 - 0.24 = 1.66 m
above the floor
Answer:
+ 5 m/s
Explanation:
change in displacement = ΔX=final position - initial position
ΔX = 0-(-5) =0+5 =+ 5 m
average velocity = ΔX/t
= +5/1
= + 5 m/s
positive sign shows that ball rolls towards right
Work = (force) x (distance)
80 J = (force) x (4 m)
Force = (80 J) / (4 m) = 20 N
That's IF the force was in the same direction as the 4m of motion.
If the force was kind of slanted, then it had to be stronger, and
it had a component of 20N in the direction of the motion.
Answer:
Electromagnets are special types of magnets that are made by passing current through coils of wire. To make an electromagnet, the minimum requirements are:
1. A nail (usually made of iron, steel or zinc)
2. Dry cell batteries
3. Wire (Usually copper wire)
Other things could be:
1. Electric tape to hold both ends of the wire properly at the battery terminals.
2. Scissors to cut the wire into desired length.
3. Iron fillings for testing purposes.