Does Physics involve science? Because I think there's a chemical bond between us. :3
The angle of refraction is <span>45°.</span>
The period of the pendulum of length 3. 171 m when acceleration of gravity is 9. 832 m/s, is 3.57 seconds.
<h3>What is time period of pendulum?</h3>
Pendulum is the body which is pivoted to a point and perform back and forth motion around that point by swinging due to the influence of gravity.
The time period of a pendulum is the time taken by it to complete one cycle of swing left to right and right to left.
It can be given as,

Here, (g) is the gravitational force of Earth and (L) is the length of the pendulum.
A pendulum of length 3.171 m. The acceleration of gravity is 9.832 m/s2. The period at the north pole is,

Thus, the period of the pendulum of length 3. 171 m when acceleration of gravity is 9. 832 m/s, is 3.57 seconds.
Learn more about the time period of pendulum here;
brainly.com/question/3551146
#SPJ4
Answer:
-54 m/s²
Explanation:
Acceleration is defined as the change in velocity of a body with respect to time. Mathematically,
Acceleration A = change in velocity/time
A = dv/dt
Given Vx = at − bt³
The time at which the particle reaches its maximum displacement is at when vx = 0.
0 = at-bt³
t(a-bt²) = 0
a-bt² = 0
a = bt²
t² = a/b ... (1)
A = dvx/dt = a - 3bt²(by differentiating)
Acceleration = a - 3bt²... (2)
Substituting t² = a/b into equation 2 will give;
Acceleration = a - 3b(a/b)
Acceleration = a-3a
Acceleration = -2a
Substituting the value of a = 27m/s into the resulting equation of acceleration gives;
Acceleration = -2(27)
Acceleration = -54m/s²
Therefore at maximum displacement in the positive x direction, the acceleration of the particle will be -54m/s²
Answer:
F = 1.63 x 10⁻⁹ N
Explanation:
Complete question is as follows:
The diagram below shows two bowling balls, A and B, each having a mass of 7.0 kg, placed 2.00 m apart between their centers. Find the magnitude of Gravitational Force?
Answer:
The gravitational force is given by Newton's Gravitational Law as follows:
F = Gm₁m₂/r²
where,
F = Gravitational Force = ?
G = Universal Gravitational Constant = 6.67 x 10⁻¹¹ N.m²/kg²
m₁ = m₂ = mass of each ball = 7 kg
r = distance between balls = 2 m
Therefore,
F = (6.67 x 10⁻¹¹ N.m²/kg²)(7 kg)(7 kg)/(2 m)²
<u>F = 1.63 x 10⁻⁹ N</u>