A two digit number has a tens digit and a ones digit.
Let's say x = tens digit and y = ones digit
"The sum of the digits is 5"
x + y = 5
The next phrase is "the number multiplied by 3 is 42" but we need to represent the number using the digits. So they need to be multiplied first by their place value and added together. [Example: 34 = 3(10) + 4(1)]
The number is: 10x + y
3(10x + y) = 42
The system of equations: (two equations for two unknowns)
x + y = 5
30x + 3y = 42
Then you can use substitution or elimination to combine and solve.
I'll use elimination, multiply the entire top equation by -3 and add the equations together. y will cancel out
-3x - 3y = -15
30x + 3y = 42
------------------
27x + 0 = 27
x = 1
then plug x = 1 into either equation to find y
1 + y = 5
y = 4
remember the x and y represent digits so the number xy is 14
Answer:
57
Step-by-step explanation:
EGB and EHD are the same angles.
If
is the cumulative distribution function for
, then

Then the probability density function for
is
:

The
th moment of
is
![E[Y^n]=\displaystyle\int_{-\infty}^\infty y^nf_Y(y)\,\mathrm dy=\frac1{\sqrt{2\pi}}\int_0^\infty y^{n-1}e^{-\frac12(\ln y)^2}\,\mathrm dy](https://tex.z-dn.net/?f=E%5BY%5En%5D%3D%5Cdisplaystyle%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20y%5Enf_Y%28y%29%5C%2C%5Cmathrm%20dy%3D%5Cfrac1%7B%5Csqrt%7B2%5Cpi%7D%7D%5Cint_0%5E%5Cinfty%20y%5E%7Bn-1%7De%5E%7B-%5Cfrac12%28%5Cln%20y%29%5E2%7D%5C%2C%5Cmathrm%20dy)
Let
, so that
and
:
![E[Y^n]=\displaystyle\frac1{\sqrt{2\pi}}\int_{-\infty}^\infty e^{nu}e^{-\frac12u^2}\,\mathrm du=\frac1{\sqrt{2\pi}}\int_{-\infty}^\infty e^{nu-\frac12u^2}\,\mathrm du](https://tex.z-dn.net/?f=E%5BY%5En%5D%3D%5Cdisplaystyle%5Cfrac1%7B%5Csqrt%7B2%5Cpi%7D%7D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20e%5E%7Bnu%7De%5E%7B-%5Cfrac12u%5E2%7D%5C%2C%5Cmathrm%20du%3D%5Cfrac1%7B%5Csqrt%7B2%5Cpi%7D%7D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20e%5E%7Bnu-%5Cfrac12u%5E2%7D%5C%2C%5Cmathrm%20du)
Complete the square in the exponent:

![E[Y^n]=\displaystyle\frac1{\sqrt{2\pi}}\int_{-\infty}^\infty e^{\frac12(n^2-(u-n)^2)}\,\mathrm du=\frac{e^{\frac12n^2}}{\sqrt{2\pi}}\int_{-\infty}^\infty e^{-\frac12(u-n)^2}\,\mathrm du](https://tex.z-dn.net/?f=E%5BY%5En%5D%3D%5Cdisplaystyle%5Cfrac1%7B%5Csqrt%7B2%5Cpi%7D%7D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20e%5E%7B%5Cfrac12%28n%5E2-%28u-n%29%5E2%29%7D%5C%2C%5Cmathrm%20du%3D%5Cfrac%7Be%5E%7B%5Cfrac12n%5E2%7D%7D%7B%5Csqrt%7B2%5Cpi%7D%7D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20e%5E%7B-%5Cfrac12%28u-n%29%5E2%7D%5C%2C%5Cmathrm%20du)
But
is exactly the PDF of a normal distribution with mean
and variance 1; in other words, the 0th moment of a random variable
:
![E[U^0]=\displaystyle\frac1{\sqrt{2\pi}}\int_{-\infty}^\infty e^{-\frac12(u-n)^2}\,\mathrm du=1](https://tex.z-dn.net/?f=E%5BU%5E0%5D%3D%5Cdisplaystyle%5Cfrac1%7B%5Csqrt%7B2%5Cpi%7D%7D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20e%5E%7B-%5Cfrac12%28u-n%29%5E2%7D%5C%2C%5Cmathrm%20du%3D1)
so we end up with
![E[Y^n]=e^{\frac12n^2}](https://tex.z-dn.net/?f=E%5BY%5En%5D%3De%5E%7B%5Cfrac12n%5E2%7D)
Answer:
25
Step-by-step explanation:
25
(5)² = 25 OR √25 = 5
2/7 is the simplification form