Answer:
1.9841256 kg
Explanation:
Given;
Length of the swimming pool = 25.0 ft = 7.62 m ( 1 ft = 0.3048 m )
Width of the swimming pool = 18.5 ft = 5.64 m
Depth of the pool = 9.0 ft =
Total depth of the water in the pool when filled = 9 ft - 7 inches = 2.56 m
now,
Volume of the water in the pool = Length × Width × Depth
or
Volume of the water in the pool = 7.62 × 5.64 × 2.56 = 110.2292 m³
also,
1 m³ = 1000 L
thus,
110.2292 m³ = 110229.2 L
also it is given that 18 mg of Cl is added to 1 liter of water
therefore,
In 110229.2 L of water Cl added will be = 110229.2 × 18 = 1984125.6 mg
or
= 1.9841256 kg
Explanation:
A force is a push or pull upon an object resulting from the object's interaction with another object. Whenever there is an interaction between two objects, there is a force upon each of the objects. When the interaction ceases, the two objects no longer experience the force.
Answer:
V initial = 29.4 m.s²
Explanation:
( Using the laws of motion)
V final = V initial + Acceleration × time
0 = V initial + ( -9.8)(3)
29.4 = V initial
* I took upward as positive that's why I substituted -9.8 *
* for V final we know that at maximum height the ball is not moving thats why is = 0 *
Answer:
ω = 2.1 rad/sec
Explanation:
- As the rock is moving along with the merry-go-round, in a circular trajectory, there must be an external force, keeping it on track.
- This force, that changes the direction of the rock but not its speed, is the centripetal force, and aims always towards the center of the circle.
- Now, we need to ask ourselves: what supplies this force?
- In this case, the only force acting on the rock that could do it, is the friction force, more precisely, the static friction force.
- We know that this force can be expressed as follows:

where μs = coefficient of static friction between the rock and the merry-
go-round surface = 0.7, and Fn = normal force.
- In this case, as the surface is horizontal, and the rock is not accelerated in the vertical direction, this force in magnitude must be equal to the weight of the rock, as follows:
- Fn = m*g (2)
- This static friction force is just the same as the centripetal force.
- The centripetal force depends on the square of the angular velocity and the radius of the trajectory, as follows:

- Since (1) is equal to (3), replacing (2) in (1) and solving for ω, we get:

- This is the minimum angular velocity that would cause the rock to begin sliding off, due to that if it is larger than this value , the centripetal force will be larger that the static friction force, which will become a kinetic friction force, causing the rock to slide off.