Answer would be B. I provided work on an image attached. Message me if u have any other questions on how to do it
Hey there !:
HF s molecule with the strongest intermolecular force
<span>HF > HI > HBr > HCl</span><span>
</span>The main factor of influence at the boiling point is the question of intermolecular forces, but not only that, the molar mass also has influence (the greater the molar mass, the greater the boiling point). Note that the only one forming hydrogen bridges is the HF, therefore the largest boiling point, iodine, bromine and chlorine have the same type of intermolecular (permanent dipole) connections as they are polar, and what will differentiate the boiling point of each one is the molar mass.
<span />
Answer:
The mole and atonmicity of both the gases are different, the number of atoms is not same.
Explanation:
The number of atoms in a molecule (compound) depends on mole number and atomicity.
↬ Mole of 100 g H₂ = 100g ÷ 2u = 50 mole
∴Number of atoms in 100 g H₂
= 2 x 50 x 6.022 × 10²³
= 6.022 x 10²⁴ atoms
↬ Mole of 100 g He = 100g ÷ 4u = 25 mole
∴ Number of atoms in 100 g He
= 1 × 25 × 6.022 × 10²³
= 150.55 × 10²³
= 1.5055 x 10²⁵ atoms
Thus, The mole and atonmicity of both the gases are different, the number of atoms is not same.
<u>-TheUnknownScientist</u><u> 72</u>
Chemical because it results in sour tasting lactic acid.
Answer:
gasss
Explanation:
gas increases the kinetic energy of the particles, causing the gas to expand.