Answer:
Explanation:
a )
Each blade is in the form of rod with axis near one end of the rod
Moment of inertia of one blade
= 1/3 x m l²
where m is mass of the blade
l is length of each blade.
Total moment of moment of 3 blades
= 3 x
x m l²
ml²
2 )
Given
m = 5500 kg
l = 45 m
Putting these values we get
moment of inertia of one blade
= 1/3 x 5500 x 45 x 45
= 37.125 x 10⁵ kg.m²
Moment of inertia of 3 blades
= 3 x 37.125 x 10⁵ kg.m²
= 111 .375 x 10⁵ kg.m²
c )
Angular momentum
= I x ω
I is moment of inertia of turbine
ω is angular velocity
ω = 2π f
f is frequency of rotation of blade
d )
I = 111 .375 x 10⁵ kg.m² ( Calculated )
f = 11 rpm ( revolution per minute )
= 11 / 60 revolution per second
ω = 2π f
= 2π x 11 / 60 rad / s
Angular momentum
= I x ω
111 .375 x 10⁵ kg.m² x 2π x 11 / 60 rad / s
= 128.23 x 10⁵ kgm² s⁻¹ .
Answer:
Magnetic activity and sunspots are in a proportional relationship.
Explanation:
From the graph, as one increases, so does the other, thus we describe the relationship as proportional.
Other than that, all of your other answers seem correct.
Answer:
amount of work done, W = 549.36 kJ
Given:
mass of a car engine, m = 2500 kg
initial velocity, u = 45 mph
final velocity, v = 65 mph
1 mile = 1609
Solution:
We know that 1 hour = 3600 s
Now, velocities in m/s are given as:
u = 45 mph =
= 20.11 m/s
v = 65 mph =
= 29.05 m/s
Now, the amount of work done, W is given by the change in kinetic energy of the car and is given by:
W = 
W = 
W = 
W = 549.36 kJ
<span>.87 m/s^2 ,hope this helps!!!!!!</span>