Answer:
About Transcript. Nuclear binding energy is the energy required to split an atom's nucleus into protons and neutrons. Mass defect is the difference between the predicted mass and the actual mass of an atom's nucleus. The binding energy of a system can appear as extra mass, which accounts for this difference.
Explanation:
PLZ MARK AS THE BRAINLIEST
I NEED IT URGENTLY
HAVE A GOOD DAY
MAY GOD BLESS U
: )
Answer:
the number density of the protons in the beam is 3.2 × 10¹³ m⁻³
Explanation:
Given that;
diameter D = 2.0 mm
current I = 1.0 mA
K.E of each proton is 20 MeV
the number density of the protons in the beam = ?
Now, we make use of the relation between current and drift velocity
I = MeAv ⇒ 1 / eAv
The kinetic energy of protons is given by;
K = 
v²
v = √( 2K /
)
lets relate the cross-sectional area A of the beam to its diameter D;
A =
πD²
now, we substitute for v and A
n = I /
πeD² ×√( 2K /
)
n = 4I/π eD² × √(
/ 2K )
so we plug in our values;
n = ((4×1.0 mA)/(π(1.602×10⁻¹⁹C)(2mm)²) × √(1.673×10⁻²⁷kg / 2×( 20 MeV)(1.602×10⁻¹⁹ J/ev )
n = 1.98695 × 10¹⁸ × 1.6157967 × 10⁻⁵
n = 3.2 × 10¹³ m⁻³
Therefore, the number density of the protons in the beam is 3.2 × 10¹³ m⁻³
I’m pretty sure the answer would be 66.79141 kilogram force
the layers of rocks, the ancient treasures that are at the bottom of the sea, how old the coral is. But I don't think they determined how old it is, how would the dinosaurs that lived in water swim or any drink water. I don't know if this helps but hopefully it does. Also scientist have made advanced tech that could help with the age determination of the ocean floor.
Answer:
<em>A) 7.37 x 10^-4 N</em>
<em>B) The resultant force will be towards the -x axis</em>
Explanation:
The three masses have mass = 3500 kg
For the force of attraction between the mass at the origin and the mass -100 cm away:
distance r = 100 cm = 1 m
gravitational constant G= 6.67×10^−11 N⋅m^2/kg^2
Gravitational force of attraction
= 
where G is the gravitational constant
m is the mass of each of the masses
r is the distance apart = 1 m
substituting, we have
=
= 8.17 x 10^-4 N
For the force of attraction between the mass at the origin and the mass 320 cm away
distance r = 320 cm = 3.2 m
= 
substituting, we have
=
= 7.98 x 10^-5 N
Resultant force = (8.17 x 10^-4 N) - (7.98 x 10^-5 N) = <em>7.37 x 10^-4 N</em>
<em></em>
<em>B) The resultant force will be towards the -x axis</em>