Answer:A certain vehicle loses 3.5% of its value each year. If the vehicle has an initial value of $11,168, construct a model that represents the value of the vehicle after a certain number of years. Use your model to compute the value of the vehicle at the end of 6 years.
Explanation:
Answer:
D) AND gate.
Explanation:
Given that:
A certain printer requires that all of the following conditions be satisfied before it will send a HIGH to la microprocessor acknowledging that it is ready to print
These conditions are:
1. The printer's electronic circuits must be energized.
2. Paper must be loaded and ready to advance.
3. The printer must be "on line" with the microprocessor.
Now; if these conditions are met the logic gate produces a HIGH output indicating readiness to print.
The objective here is to determine the basic logic gate used in this circuit.
Now;
For NOR gate;
NOR gate gives HIGH only when all the inputs are low. but the question states it that "a HIGH is generated and applied to a 3-input logic gate". This already falsify NOR gate to be the right answer.
For NOT gate.
NOT gate operates with only one input and one output device but here; we are dealing with 3-input logic gate.
Similarly, OR gate gives output as a high if any one of the input signals is high but we need "a HIGH that is generated and applied to a 3-input logic gate".
Finally, AND gate output is HIGH only when all the input signal is HIGH and vice versa, i.e AND gate output is LOW only when all the input signal is LOW. So AND gate satisfies the given criteria that; all the three conditions must be true for the final signal to be HIGH.
Answer:
(a) 2.39 MPa (b) 3.03 kJ (c) 3.035 kJ
Explanation:
Solution
Recall that:
A 10 gr of air is compressed isentropically
The initial air is at = 27 °C, 110 kPa
After compression air is at = a450 °C
For air, R=287 J/kg.K
cv = 716.5 J/kg.K
y = 1.4
Now,
(a) W efind the pressure on [MPa]
Thus,
T₂/T₁ = (p₂/p₁)^r-1/r
=(450 + 273)/27 + 273) =
=(p₂/110) ^0.4/1.4
p₂ becomes 2390.3 kPa
So, p₂ = 2.39 MPa
(b) For the increase in total internal energy, is given below:
ΔU = mCv (T₂ - T₁)
=(10/100) (716.5) (450 -27)
ΔU =3030 J
ΔU =3.03 kJ
(c) The next step is to find the total work needed in kJ
ΔW = mR ( (T₂ - T₁) / k- 1
(10/100) (287) (450 -27)/1.4 -1
ΔW = 3035 J
Hence, the total work required is = 3.035 kJ
Answer:
import pandas pd
def read_prices(tickers):
price_dict = {}
# Read ingthe ticker data for all the tickers
for ticker in tickers:
# Read data for one ticker using pandas.read_csv
# We assume no column names in csv file
ticker_data = pd.read_csv("./" + ticker + ".csv", names=['date', 'price', 'volume'])
# ticker_data is now a panda data frame
# Creating dictionary
# for the ticker
price_dict[ticker] = {}
for i in range(len(ticker_data)):
# Use pandas.iloc to access data
date = ticker_data.iloc[i]['date']
price = ticker_data.iloc[i]['price']
price_dict[ticker][date] = price
return price_dict
True will be your answer have a great day