1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
love history [14]
3 years ago
11

One kg of an idea gas is contained in one side of a well-insulated vessel at 800 kPa. The other side of the vessel is under vacu

um. The two sides are separated by a piston that is initially held in place by the pins. The pins are removed and the gas suddenly expands until it hits the stops. What happens to the internal energy of the gas?
a. internal energy goes up
b. internal energy goes down
c. internal energy stays the same
d. we need to know the volumes to make the calculation
Engineering
1 answer:
laiz [17]3 years ago
7 0

Answer:

Option C = internal energy stays the same.

Explanation:

The internal energy will remain the same or unchanged because this question has to do with a concept in physics or classical chemistry (in thermodynamics) known as Free expansion.

So, the internal energy will be equals to the multiplication of the change in temperature, the heat capacity (keeping volume constant) and the number of moles. And in free expansion the internal energy is ZERO/UNCHANGED.

Where, the internal energy, ∆U = 0 =quantity of heat, q - work,w.

The amount of heat,q = Work,w.

In the concept of free expansion the only thing that changes is the volume.

You might be interested in
A labor-intensive process to manufacture a product has a fixed cost of $338,000 and a variable cost of $143 per unit. An automat
ozzi

Answer:

no of unit is 17941

Explanation:

given data

fixed cost = $338,000

variable cost = $143 per unit

fixed cost = $1,244,000  

variable cost = $92.50 per unit

solution

we consider here no of unit is = n

so here total cost of labor will be sum of fix and variable cost i.e

total cost of labor = $33800 + $143 n  ..........1

and

total cost of capital intensive  = $1,244,000 + $92.5 n   ..........2

so here in both we prefer cost of capital if cost of capital intensive less than cost of labor

$1,244,000 + $92.5 n  <  $33800 + $143 n

solve we get

n > \frac{906000}{50.5}

n > 17941

and

cost of producing less than selling cost so here

$1,244,000 + $92.5 n < 197 n

solve it we get

n > \frac{1244000}{104.5}  

n > 11904

so in both we get greatest no is 17941

so no of unit is 17941

3 0
2 years ago
Hello I need some help with this please. Pick a problem in your school or community that you think could be solved with technolo
bezimeni [28]

Answer:

An AI operated automatic garbage collection system

Explanation:

There is always an issue in my neighbourhood with the garbagemen coming on time so having an automatic system will help in the overall efficiency in the task

7 0
2 years ago
Read 2 more answers
Air enters a cmpressor at 20 deg C and 80 kPa and exits at 800 kPa and 200 deg C. The power input is 400 kW. Find the heat trans
aksik [14]

Answer:

The heat is transferred is at the rate of 752.33 kW

Solution:

As per the question:

Temperature at inlet, T_{i} = 20^{\circ}C = 273 + 20 = 293 K

Temperature at the outlet, T_{o} = 200{\circ}C = 273 + 200 = 473 K

Pressure at inlet, P_{i} = 80 kPa = 80\times 10^{3} Pa

Pressure at outlet, P_{o} = 800 kPa = 800\times 10^{3} Pa

Speed at the outlet, v_{o} = 20 m/s

Diameter of the tube, D = 10 cm = 10\times 10^{- 2} m = 0.1 m

Input power, P_{i} = 400 kW = 400\times 10^{3} W

Now,

To calculate the heat transfer, Q, we make use of the steady flow eqn:

h_{i} + \frac{v_{i}^{2}}{2} + gH  + Q = h_{o} + \frac{v_{o}^{2}}{2} + gH' + p_{s}

where

h_{i} = specific enthalpy at inlet

h_{o} = specific enthalpy at outlet

v_{i} = air speed at inlet

p_{s} = specific power input

H and H' = Elevation of inlet and outlet

Now, if

v_{i} = 0 and H = H'

Then the above eqn reduces to:

h_{i} + gH + Q = h_{o} + \frac{v_{o}^{2}}{2} + gH + p_{s}

Q = h_{o} - h_{i} + \frac{v_{o}^{2}}{2} + p_{s}                (1)

Also,

p_{s} = \frac{P_{i}}{ mass, m}

Area of cross-section, A = \frac{\pi D^{2}}{4} =\frac{\pi 0.1^{2}}{4} = 7.85\times 10^{- 3} m^{2}

Specific Volume at outlet, V_{o} = A\times v_{o} = 7.85\times 10^{- 3}\times 20 = 0.157 m^{3}/s

From the eqn:

P_{o}V_{o} = mRT_{o}

m = \frac{800\times 10^{3}\times 0.157}{287\times 473} = 0.925 kg/s

Now,

p_{s} = \frac{400\times 10^{3}}{0.925} = 432.432 kJ/kg

Also,

\Delta h = h_{o} - h_{i} = c_{p}\Delta T =c_{p}(T_{o} - T_{i}) = 1.005(200 - 20) = 180.9 kJ/kg

Now, using these values in eqn (1):

Q = 180.9 + \frac{20^{2}}{2} + 432.432 = 813.33 kW

Now, rate of heat transfer, q:

q = mQ = 0.925\times 813.33 = 752.33 kW

4 0
2 years ago
What happens to battery when it produces current to the system
olasank [31]

Answer:

Electricity, as you probably already know, is the flow of electrons through a conductive path like a wire. This path is called a circuit. ... The chemical reactions in the battery causes a build up of electrons at the anode. This results in an electrical difference between the anode and the cathode

3 0
3 years ago
What is the definition of a duty cycle?
ira [324]

Answer:

D=\frac{PW}{T}*100

Explanation:

In electrical terms, is the ratio of time in which a load or circuit is ON compared to the time in which the load or circuit is OFF.

The duty cycle or power cycle, is expressed as a percentage of the activation time. For example, a 70% duty cycle is a signal that 70% of the time is activated and the other 30% disabled. Its equation can be expressed as:

D=\frac{PW}{T}*100

Where:

D=Duty\hspace{3}Cycle

PW=Pulse\hspace{3}Active\hspace{3}Time

T=Period\hspace{3}of\hspace{3}the\hspace{3}Signal

Here is a picture that will help you understand these concepts.

5 0
3 years ago
Other questions:
  • Solve the compound inequality. 3x − 4 &gt; 5 or 1 − 2x ≥ 7
    8·1 answer
  • Write analgorithm and a C code to calculate the sum and average value of an array12elements.For example: Array_Temperaure=[10, 1
    6·1 answer
  • A 15.00 mL sample of a solution of H2SO4 of unknown concentration was titrated with 0.3200M NaOH. the titration required 21.30 m
    12·1 answer
  • Suppose that the voltage is reduced by 10 percent (to 90 VV). By what percentage is the power reduced? Assume that the resistanc
    10·1 answer
  • The rate at which velocity changes is called?
    5·2 answers
  • Fluorescent troffers are a type of _ lighting fixture
    6·1 answer
  • Summarize three attributes that are important for an engineer to possess.
    13·1 answer
  • Which statement describes a possible limitation on a experimental design? A. Collecting samples to analyze is expensive B. The e
    6·2 answers
  • Once you get the answer correct first i will mark you brainliest!!
    15·2 answers
  • About what thickness of aluminum is needed to stop a beam of (a) 2.5-MeV electrons, (b) 2.5-MeV protons, and (c) 10-MeV alpha pa
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!