1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
love history [14]
3 years ago
11

One kg of an idea gas is contained in one side of a well-insulated vessel at 800 kPa. The other side of the vessel is under vacu

um. The two sides are separated by a piston that is initially held in place by the pins. The pins are removed and the gas suddenly expands until it hits the stops. What happens to the internal energy of the gas?
a. internal energy goes up
b. internal energy goes down
c. internal energy stays the same
d. we need to know the volumes to make the calculation
Engineering
1 answer:
laiz [17]3 years ago
7 0

Answer:

Option C = internal energy stays the same.

Explanation:

The internal energy will remain the same or unchanged because this question has to do with a concept in physics or classical chemistry (in thermodynamics) known as Free expansion.

So, the internal energy will be equals to the multiplication of the change in temperature, the heat capacity (keeping volume constant) and the number of moles. And in free expansion the internal energy is ZERO/UNCHANGED.

Where, the internal energy, ∆U = 0 =quantity of heat, q - work,w.

The amount of heat,q = Work,w.

In the concept of free expansion the only thing that changes is the volume.

You might be interested in
The welding method that requires the operator to observe and only make corrections is
SVEN [57.7K]
Automatic manual semiautomatic
3 0
3 years ago
Read 2 more answers
A small lake with volume of 160,000 m^3 receives agricultural drainage waters that contain 150 mg / L total dissolved solids (TD
Stels [109]

Answer:

Explanation:

Given that : -

The desirable limit is 500 mg / l , but

allowable upto 2000 mg / l.

The take volume is V = 160.000 m3

V = 160 , 000 x 103 l

The crainage gives 150 mg / l and lake has initialy 100 mg / l

Code of tpr frpm drawn = 150 x 60, 000 x 1000

Ci = 9000 kg / gr

Cl = 100 x 160,000 x 1000

Cl = 16, 000 kg

Since allowable limit = 2000 mg / l

Cn = ( 2000 x 160, 00 x 1000 )

= 320, 000 kg

so, each year the rate increases, by 9000 kg / yr

Read level = ( 320, 000 - 16,000 )

Li = 304, 000 kg

Tr=<u>304,000</u>

      900

=33.77

5 0
3 years ago
Read 2 more answers
a stem and leaf display describes two-digit integers between 20 and 80. for one one of the classes displayed, the row appears as
allochka39001 [22]

Answer:

  52, 50, 54, 54, 56

Explanation:

The "stem" in this scenario is the tens digit of the number. Each "leaf" is the ones digit of a distinct number with the given tens digit.

  5 | 20446 represents the numbers 52, 50, 54, 54, 56

8 0
3 years ago
An insulated piston-cylinder device contains 0.15 of saturated refrigerant-134a vapor at 0.8 MPa pressure. The refrigerant is no
Stells [14]

Answer:

Assumption:

1. The kinetic and potential energy changes are negligible

2. The cylinder is well insulated and thus heat transfer is negligible.

3. The thermal energy stored in the cylinder itself is negligible.

4. The process is stated to be reversible

Analysis:

a. This is reversible adiabatic(i.e isentropic) process and thus s_{1} =s_{2}

From the refrigerant table A11-A13

P_{1} =0.8MPa   \left \{ {{ {{v_{1}=v_{g}  @0.8MPa =0.025645 m^{3/}/kg } } \atop { {{u_{1}=u_{g}  @0.8MPa =246.82 kJ/kg } -   also  {{s_{1}=s_{g}  @0.8MPa =0.91853 kJ/kgK } } \right.

sat vapor

m=\frac{V}{v_{1} } =\frac{0.15}{0.025645} =5.8491 kg\\and \\\\P_{2} =0.2MPa  \left \{ {{x_{2} =\frac{s_{2} -s_{f} }{s_{fg }}=\frac{0.91853-0.15449}{0.78339}   = 0.9753 \atop {u_{2} =u_{f} +x_{2} }(u_{fg}) =  38.26+0.9753(186.25)= 38.26+181.65 =219.9kJ/kg \right. \\s_{1} = s_{2}

T_{2} =T_{sat @ 0.2MPa} = -10.09^{o}  C

b.) We take the content of the cylinder as the sysytem.

This is a closed system since no mass leaves or enters.

Hence, the energy balance for adiabatic closed system can be expressed as:

E_{in} - E_{out}  =ΔE

w_{b, out}  =ΔU

w_{b, out} =m([tex]u_{1} -u_{2)

w_{b, out}  = workdone during the isentropic process

=5.8491(246.82-219.9)

=5.8491(26.91)

=157.3993

=157.4kJ

4 0
3 years ago
FD=CD*((P*(V^2)*A)/2)<br><br>Please solve for V
REY [17]

Answer:

The answer is V = √2FD ÷ CD × PA

Explanation:

FD = CD × PV²A ÷ 2

V² = 2FD ÷ CD × PA

V = √2FD ÷ CD × PA

Thus, The value of V is V = √2FD ÷ CD × PA

 

<u>-TheUnknownScientist 72</u>

7 0
2 years ago
Other questions:
  • Find the minimum diameter of an alloy, tensile strength 75 MPa, needed to support a 30 kN load.
    14·1 answer
  • A rod of length L lies along the x axis with its left end at the origin. It has a nonuniform charge density λ = αx, where α is a
    14·2 answers
  • In a production turning operation, the foreman has decreed that a single pass must be completed on the cylindrical workpiece in
    7·1 answer
  • What is Euler's equation?
    6·1 answer
  • Cold water at 20 degrees C and 5000 kg/hr is to be heated by hot water supplied at 80 degrees C and 10,000 kg/hr. You select fro
    14·1 answer
  • If you are interested only in the temperature range of 20° to 40°C and the ADC has a 0 to 3V input range, design a signal condit
    10·1 answer
  • You filled a balloon that has a volume of 45 cm3 with helium gas. What is the volume of the helium gas?
    13·1 answer
  • A properly fitted wearable pfd should have which characteristics
    11·1 answer
  • You may wonder who the rest goes
    11·1 answer
  • If welding is being done in the vertical position, the torch should have a travel angle of?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!