![\bf \stackrel{\textit{first year}}{2000}~~,~~\stackrel{\textit{second year}}{2000+\stackrel{\textit{10\% of 2000}}{\frac{2000}{10}}}\implies 2200](https://tex.z-dn.net/?f=%20%5Cbf%20%5Cstackrel%7B%5Ctextit%7Bfirst%20year%7D%7D%7B2000%7D~~%2C~~%5Cstackrel%7B%5Ctextit%7Bsecond%20year%7D%7D%7B2000%2B%5Cstackrel%7B%5Ctextit%7B10%5C%25%20of%202000%7D%7D%7B%5Cfrac%7B2000%7D%7B10%7D%7D%7D%5Cimplies%202200%20)
now, if we take 2000 to be the 100%, what is 2200? well, 2200 is just 100% + 10%, namely 110%, and if we change that percent format to a decimal, we simply divide it by 100, thus
.
so, 1.1 is the decimal number we multiply a term to get the next term, namely 1.1 is the common ratio.
![\bf \qquad \qquad \textit{sum of a finite geometric sequence}\\\\S_n=\sum\limits_{i=1}^{n}\ a_1\cdot r^{i-1}\implies S_n=a_1\left( \cfrac{1-r^n}{1-r} \right)\quad \begin{cases}n=n^{th}\ term\\a_1=\textit{first term's value}\\r=\textit{common ratio}\\----------\\a_1=2000\\r=1.1\\n=4\end{cases}\\\\\\S_4=2000\left[ \cfrac{1-(1.1)^4}{1-1.1} \right]\implies S_4=2000\left(\cfrac{-0.4641}{-0.1} \right)\\\\\\S_4=2000(4.641)\implies S_4=9282](https://tex.z-dn.net/?f=%20%5Cbf%20%5Cqquad%20%5Cqquad%20%5Ctextit%7Bsum%20of%20a%20finite%20geometric%20sequence%7D%5C%5C%5C%5CS_n%3D%5Csum%5Climits_%7Bi%3D1%7D%5E%7Bn%7D%5C%20a_1%5Ccdot%20r%5E%7Bi-1%7D%5Cimplies%20S_n%3Da_1%5Cleft%28%20%5Ccfrac%7B1-r%5En%7D%7B1-r%7D%20%5Cright%29%5Cquad%20%5Cbegin%7Bcases%7Dn%3Dn%5E%7Bth%7D%5C%20term%5C%5Ca_1%3D%5Ctextit%7Bfirst%20term%27s%20value%7D%5C%5Cr%3D%5Ctextit%7Bcommon%20ratio%7D%5C%5C----------%5C%5Ca_1%3D2000%5C%5Cr%3D1.1%5C%5Cn%3D4%5Cend%7Bcases%7D%5C%5C%5C%5C%5C%5CS_4%3D2000%5Cleft%5B%20%5Ccfrac%7B1-%281.1%29%5E4%7D%7B1-1.1%7D%20%5Cright%5D%5Cimplies%20S_4%3D2000%5Cleft%28%5Ccfrac%7B-0.4641%7D%7B-0.1%7D%20%20%5Cright%29%5C%5C%5C%5C%5C%5CS_4%3D2000%284.641%29%5Cimplies%20S_4%3D9282%20)
False.
The Rational Root theorem states that P is a factor of the constant term and q is a factor of the leading coefficient.
Answer:
0
Assuming it’s a normal dice, the highest number is 6.
You cannot get the number 7 since it doesn’t exist on the dice.
Broseph, it’s just asking you how you personally feel after a good speech. There’s no wrong answers.
So the remaining 21.7% is the sucsess rate. 100%-21.7%=78.3% 13=78.3% of x so just solve the algebra 13=.783x basically just divide 13 by .783... ez<span />