After doing some research on Wiki, Google, and Easyscienceforkids, I have come to a conclusion that:
Mass: 5.972 * 10^24 kg
Radius: 3958.8 mi
Distance from the sun: 92.96 million mi
Answer:
(a) 1462.38 m/s
(b) 2068.13 m/s
Explanation:
(a)
The Kinetic energy of the atom can be given as:
K.E = (3/2)KT
where,
K = Boltzman's Constant = 1.38 x 10⁻²³ J/k
K.E = Kinetic Energy of atoms = 343 K
T = absolute temperature of atoms
The K.E is also given as:
K.E = (1/2)mv²
Comparing both equations:
(1/2)mv² = (3/2)KT
v² = 3KT/m
v = √[3KT/m]
where,
m = mass of Helium = (4 A.M.U)(1.66 X 10⁻²⁷ kg/ A.M.U) = 6.64 x 10⁻²⁷ kg
v = RMS Speed of Helium Atoms = ?
Therefore,
v = √[(3)(1.38 x 10⁻²³ J/K)(343 K)/(6.64 x 10⁻²⁷ kg)]
<u>v = 1462.38 m/s</u>
(b)
For double temperature:
T = 2 x 343 K = 686 K
all other data remains same:
v = √[(3)(1.38 x 10⁻²³ J/K)(686 K)/(6.64 x 10⁻²⁷ kg)]
<u>v = 2068.13 m/s</u>
Answer:
its 00.0035474
Explanation:
..... .. . . .. . . . . .. .
Answer:6.71 m/s
Explanation:
Given
Apple fall from a height of
We need to find the impact speed of apple which can be given by using
where v=final velocity
u=initial velocity
h=Displacement
Assuming initial velocity to be zero
substituting the value we get
1.7 x 10^2 N
or 166 N
First you find the vertical component of the weight, which is 9.8*40, (g*m), which is 392 N. You then find the angle between that and the slope, which is 90-25, which is 65. You then multiply the vertical weight by cos(65), to find the component of that that is parallel to the slope. You get 165.666 N