The reason why there is a difference between free-fall acceleration is a centrifugal force.
I attached a diagram that shows how this force aligns with the force of gravity.
From the diagram we can see that:

Where g' is the free-fall acceleration when there is no centrifugal force, r is the radius of the planet, and w is angular frequency of planet's rotation.

is the latitude.
We can calculate g' and wr^2 from the given conditions in the problem.

Our final equation is:

Colatitude is:

The answer is:
Ox:vₓ=v₀
x=v₀t
Oy:y=h-gt²/2
|vy|=gt
tgα=|vy|/vₓ=gt/v₀=>t=v₀tgα/g
y=0=>h=gt²/2=v₀²tg²α/2g=>tgα=√(2gh/v₀²)=√(2*10*20/24²)=√(400/576)=0.83=>α=tg⁻¹0.83=39°
cosα=vₓ/v=v₀/v=>v=v₀/cosα=24/cos39°=24/0,77=31.16 m/s
Ec=mv²/2=2*31.16²/2=971.47 J=>Ec≈0.97 kJ
Density=mass/volume therefore volume=mass/density; 55g/11.4g/cm^3= 4.82cm^3
Answer:
The density of the woman is 950.8 kg/m³
Explanation:
Given;
fraction of the woman's volume above the surface = 4.92%
then, fraction of the woman's volume below the surface = 100 - 4.92% = 95.08%
the specific gravity of the woman 
The density of the woman is calculate as;

Density of fresh water = 1000 kg/m³
Density of the woman = 0.9508 x 1000 kg/m³
Density of the woman = 950.8 kg/m³
Therefore, the density of the woman is 950.8 kg/m³