Answer: the molarity of the solution in volumetric flask "B' is 0.0100 M
Explanation:
Given that;
the Molarity of stock solution M₁ = 1.25M
The molarity os solution in volumetric flask A (M₂) = M₂
Volume of stock solution pipet out (V₁) = 5.00mL
Volume of solution in volumetric flask A V₂ = 25.00mL
using the dilution formula
M₁V₁ = M₂V₂
M₂ = M₁V₁ / V₂
WE SUBSTITUTE
M₂ = ( 1.25 × 5.00 ) / 25.00 mL
M₂ = 0.25 M
Now volume of solution pipet out from volumetric flask A V₂ = 2.00 mL
Molarity of solution in volumetric flask B (M₃) = M₃
Volume of solution in volumetric flask B V₃ = 50.00m L
Using dilution formula again
M₂V₂ = M₃V₃
M₃ = M₂V₂ / V₃
WE SUBSTITUTE
M₃ = ( 0.25 × 2.0) / 50.0
M₃ = 0.0100 M
Therefore the molarity of the solution in volumetric flask "B' is 0.0100 M
Answer:
There is one single covalent bond between two carbon atoms.
Explanation:
We know that sharing of electrons form covalent bonds.
If we look upon K,L,M ,N shells of the carbon and hydrogen atoms.
We found that Hydrogen is having only
electron in K shell.
And Carbon on the other hand is having
electrons in K shell and
electrons in L shell.
So carbon have
valence electrons,and it can share
bonds with any relevant atom to complete its octet.
And Hydrogen requires
electron to complete its doublet.
Alkane general formula 
For ethane 

Carbon atom is shared by
Hydrogen.
The remaining one electron
of carbon will be shared with another carbon atom.
An image of the sharing of electrons attached below,
Hence we have only
covalent bond between the two.
Answer:
At the start of the process, the volume not occupied by the water is 2 m3
Explanation:
At the start of the process you have a half full tank. It means that also a half is empty (not occupied by water).
Since the volume is 4 m3, 2 m3 are full (occupied by water) and 2 m3 (not occupied by water).
The volume in time will be
![V(t)=V_0+(f_i-f_o)*t\\\\V(t) = 2 +(6.33/1000-3.25/1000)*t=2+0.00308*t \, \, [m3]](https://tex.z-dn.net/?f=V%28t%29%3DV_0%2B%28f_i-f_o%29%2At%5C%5C%5C%5CV%28t%29%20%3D%202%20%2B%286.33%2F1000-3.25%2F1000%29%2At%3D2%2B0.00308%2At%20%5C%2C%20%5C%2C%20%5Bm3%5D)
Hi, here is a basic summary of what we did in a lab; there were 3 reactions: The procedure: Reaction 1: Solid sodium hydroxide dissolves in water to form an aqueous solution of ions. NaOH(s)-> Na+(aq) + OH-(aq) ΔH1=-34.121kJ Reaction 2: Solid sodium hydroxide reacts with an aqueous solution of HCl to form water and an aqueous solution of sodium chloride. NaOH(s) + H+(aq) + Cl-(aq) -> H2O + Na+(aq) + Cl-(aq) ΔH2=-83.602kJ Reaction 3: An aqueous solution of sodium hydroxide reacts with an aqueous solution of HCl to form water an an aqueous solution of sodium chloride. H+(aq) + OH-(aq) + Na+(aq) + Cl-(aq) -> H2O + Na+(aq) + Cl-(aq) ΔH3= -50.2kJ The ΔH values were calculated by dividing the heat gained by the number of moles (each reaction had 0.05moles of NaOH) The problem: Net ionic equations for reaction 2 & 3: 2: NaOH(s) + H+(aq) -> H2O + Na+(aq) 3: H+(aq) + OH-(aq) -> H2O i) In reaction 1, ΔH1 represents the heat evolved as solid NaOH dissolves. Look at the net ionic equations for reactions 2 and 3 and make similar statements as to what ΔH2 and ΔH3 represent. ii) Compare ΔH2 with (ΔH1 + ΔH3). Explain in sentences the similarity between these two values by using your answer to #5 above. Attempt at answering: i) Firstly, ΔH2 represents the heat evolved as the hydrogen ion displaces the sodium ion, creating a single displacement reaction. ΔH3 represents the heat evolved as the hydrogen and hydroxide ion form water via a neutralization reaction. ii) ΔH2 is equal to (or supposed to be, this is a source of error while calculating) (ΔH1 + ΔH3). The similarity between these two values is that .. (this is where I get confused!)
Source https://www.physicsforums.com/threads/calorimetry-help-chemistry.399653/