Precipitation reaction and double displacement reaction
Answer:
186.3g
Explanation:
4.5moles of K₂CO₃ is in 1000ml
? moles of K₂CO₃ is in 300 ml
(4.5 × 300)/ 1000 = 1.35 moles of K₂CO₃
1 mole of K₂CO₃ = (39 × 2) + 12 + (16 × 3) = 78 + 12 + 48 = 138g
1.35 moles of K₂CO₃ = ?
= (1.35 × 138)/1 = 186.3g
When pure HA is added to the buffer, the buffer component ratio and the pH decrease.
<h3>State and explain the relative change in the pH and in the buffer-component concentration ratio, [NaA]/[HA] for the dissolve of pure HA in the buffer.</h3>
When pure HA is added to the buffer, the buffer component ratio and the pH decrease. The added HA increases the concentrations of NA and HA. However, there is a greater relative increase in the concentration of HA. Hence, the ratio of [NaA]/[HA] decreases, causing the solution to become more acidic.
The capacity of a buffer to withstand pH change is measured. The concentration of the buffer's components namely, the acid and its conjugate base determine this ability. Greater buffer capacity is associated with higher buffer concentration.
To learn more about buffer-component, Visit:
brainly.com/question/9542245
#SPJ4
Chloroplasts.
Plants use chloroplasts to create their own energy by using sunlight.
I guess you could call them that. In chemistry, we call them Metalloids though.