Answer:
Q = 1267720 J
Explanation:
∴ QH2O = mCpΔT
∴ m H2O = 500 g
∴ Cp H2O = 4.186 J/g°C = 4.183 E-3 KJ/g°C
∴ ΔT = 120 - 50 = 70°C
⇒ QH2O = (500 g)(4.183 E-3 KJ/g°C)(70°C) = 146.51 KJ
∴ ΔHv H2O = 40.7 KJ/mol
moles H2O:
∴ mm H2O = 18.015 g/mol
⇒ moles H2O = (500 g)(mol/18.015 g) = 27.548 mol H2O
⇒ ΔHv H2O = (40.7 KJ/mol)(27.548 mol) = 1121.21 KJ
⇒ Qt = 146.51 KJ + 1121.21 KJ = 1267.72 KJ = 1267720 J
Answer:
at summer season the snow will melt and will produce water and using generators we can produce electric energy and in spring and winter can produce electric energy also using the wind
Na = +1
H = +1
O = -2
Total charge is 0:
1 + 1 + C + 3 x -2 = 0
C = 4
Answer:
Rn] 5f14 6d4 7s2 mp: none d: none. Seaborgium ..... Element. Density. Boiling or Melting Point in °C. Electron Configuration. Symbol.
Explanation:
A quantitative observation is not necessarily more useful than a non-quantitative one. However, quantitative observations do allow one to find trends.
(a), the sun rising is a non-quantitative observation.
(b), knowledge of the numerical relationship between the weight on the Moon and on Earth, is a quantitative observation.
(c), watching ice float on water does not involve a measurement; therefore, it must be a qualitative observation.
(d) the fact that we know that the water pump won’t work for depths more than 34 feet makes it quantitative. Again, seeing numbers is a giveaway that it’s a quantitative <span>observation. Quantitative is where you deal with numbers.</span>