1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vredina [299]
2 years ago
10

If you have observed something about the world and want to

Physics
1 answer:
ExtremeBDS [4]2 years ago
5 0

Answer: a

Explanation: :)

You might be interested in
What is the relationship between the mass of the objects and the force exerted?
pishuonlain [190]

Answer:

Objects with mass exert forces on each other via the force of gravity. This force is proportional to the mass of the two interacting objects, and is inversely proportional to the square of the distance between them. The factors G, M, and r are the same for all masses at the surface of the Earth.

3 0
3 years ago
What are the characteristics of the radiation emitted by a blackbody? According to Wien's Law, how many times hotter is an objec
jasenka [17]

Answer:

a) What are the characteristics of the radiation emitted by a blackbody?

The total emitted energy per unit of time and per unit of area depends in its temperature (Stefan-Boltzmann law).

The peak of emission for the spectrum will be displaced to shorter wavelengths as the temperature increase (Wien’s displacement law).

The spectral density energy is related with the temperature and the wavelength (Planck’s law).

b) According to Wien's Law, how many times hotter is an object whose blackbody emission spectrum peaks in the blue, at a wave length of 450 nm, than a object whose spectrum peaks in the red, at 700 nm?

The object with the blackbody emission spectrum peak in the blue is 1.55 times hotter than the object with the blackbody emission spectrum peak in the red.

Explanation:

A blackbody is an ideal body that absorbs all the thermal radiation that hits its surface, thus becoming an excellent emitter, as these bodies express themselves without light radiation, and therefore they look black.

The radiation of a blackbody depends only on its temperature, thus being independent of its shape, material and internal constitution.

If it is study the behavior of the total energy emitted from a blackbody at different temperatures, it can be seen how as the temperature increases the energy will also increase, this energy emitted by the blackbody is known as spectral radiance and the result of the behavior described previously is Stefan's law:

E = \sigma T^{4}  (1)

Where \sigma is the Stefan-Boltzmann constant and T is the temperature.

The Wien’s displacement law establish how the peak of emission of the spectrum will be displace to shorter wavelengths as the temperature increase (inversely proportional):

\lambda max = \frac{2.898x10^{-3} m. K}{T}   (2)

Planck’s law relate the temperature with the spectral energy density (shape) of the spectrum:

E_{\lambda} = {{8 \pi h c}\over{{\lambda}^5}{(e^{({hc}/{\lambda \kappa T})}-1)}}}  (3)

b) According to Wien's Law, how many times hotter is an object whose blackbody emission spectrum peaks in the blue, at a wavelength of 450 nm, than a object whose spectrum peaks in the red, at 700 nm?

It is need it to known the temperature of both objects before doing the comparison. That can be done by means of the Wien’s displacement law.

Equation (2) can be rewrite in terms of T:

T = \frac{2.898x10^{-3} m. K}{\lambda max}   (4)

Case for the object with the blackbody emission spectrum peak in the blue:

Before replacing all the values in equation (4), \lambda max (450 nm) will be express in meters:

450 nm . \frac{1m}{1x10^{9} nm}  ⇒ 4.5x10^{-7}m

T = \frac{2.898x10^{-3} m. K}{4.5x10^{-7}m}

T = 6440 K

Case for the object with the blackbody emission spectrum peak in the red:

Following the same approach above:

700 nm . \frac{1m}{1x10^{9} nm}  ⇒ 7x10^{-7}m

T = \frac{2.898x10^{-3} m. K}{7x10^{-7}m}

T = 4140 K

Comparison:

\frac{6440 K}{4140 K} = 1.55

The object with the blackbody emission spectrum peak in the blue is 1.55 times hotter than the object with the blackbody emission spectrum peak in the red.

4 0
3 years ago
A harmonic wave on a string with a mass per unit length of 0.050 kg/m and a tension of 60 N has an amplitude of 5.0 cm. Each sec
Dennis_Churaev [7]

Answer:

Power of the string wave will be equal to 5.464 watt

Explanation:

We have given mass per unit length is 0.050 kg/m

Tension in the string T = 60 N

Amplitude of the wave A = 5 cm = 0.05 m

Frequency f = 8 Hz

So angular frequency \omega =2\pi f=2\times 3.14\times 8=50.24rad/sec

Velocity of the string wave is equal to v=\sqrt{\frac{T}{\mu }}=\sqrt{\frac{60}{0.050}}=34.641m/sec

Power of wave propagation is equal to P=\frac{1}{2}\mu \omega ^2vA^2=\frac{1}{2}\times 0.050\times 50.24^2\times 34.641\times 0.05^2=5.464watt

So power of the wave will be equal to 5.464 watt

6 0
2 years ago
Tenses of<br>write=<br>read=<br><br>​
PilotLPTM [1.2K]

Answer:

present

Explanation:

read doesn't change but write is in present tense

7 0
2 years ago
An insulated thermos contains 106.0 cm3 of hot coffee at a temperature of 80.0 °C. You put in 11.0 g of ice cube at its melting
Andrei [34K]

Answer:

the final temperature is T f = 64.977 ° C≈ 65°C

Explanation:

Since the thermus is insulated, the heat absorbed by the ice is the heat released by the coffee. Thus:

Q coffee + Q ice = Q surroundings =0 (insulated)

We also know that the ice at its melting point , that is 0 °C ( assuming that the thermus is at atmospheric pressure= 1 atm , and has an insignificant amount of impurities ).

The heat released by coffee is sensible heat : Q = m * c * (T final - T initial)

The heat absorbed by ice is latent heat and sensible heat : Q = m * L + m * c * (T final - T initial)

therefore

m co * c co * (T fco - T ico) + m ice * L + m ice * c wat  * (T fwa - T iwa) = 0

assuming specific heat capacity of coffee is approximately the one of water c co = c wa = 4.186 J/g°C and the density of coffee is the same as water

d co = dw = 1 gr/cm³

therefore m co = d co * V co = 1 gr / cm³ * 106 cm³ = 106 gr

m co * c wat * (T f  - T ico) + m ice * L + m ice * c wat  * (T f - T iwa) = 0

m co * c wat * T f+ m ice * c wat  * T f  = m ice * c wat  * T iwa  + m co * c wat * Tico -m ice * L

T f  = (m ice * c wat  * T iwa  + m co * c wat * Tico -m ice * L ) /( m co * c wat * + m ice * c wat )

replacing values

T f = (11 g * 4.186 J/g°C * 0°C +  106 g * 4.186 J/g°C*80°C - 11 g * 334 J/gr) / ( 11 g * 4.186 J/g°C +  106 g * 4.186 J/g°C* ) = 64,977 ° C

T f = 64.977 ° C

7 0
3 years ago
Other questions:
  • Why generally metals are good conductor and non metals are bad conductor of electricity ​
    13·1 answer
  • What is the solar process that results in the production of energy? A. nuclear fission B. nuclear fusion C. convection D. radiat
    5·2 answers
  • Two positive point charges with charges q1 and q2 are separate by a distance of 30cm. A third positive charge qo is placed betwe
    14·1 answer
  • a desktop computer and monitor together draw about 2 A of current they plug into a wall outlet that is 120 V what is the Resista
    11·1 answer
  • Supposed an object is weighted with a spring balance, first in air then while totally immersed in water.The readings on the bala
    15·1 answer
  • A resistor has a resistance of 50 Ohms. If a 9V battery is connected to it, how much current flows in the wire?
    14·1 answer
  • Filament bulbs give off lots of __________ that transfers wasted energy to the surroundings. What word completes the sentence?​
    8·1 answer
  • If a specimen was being viewed using a 20x objective lens and 10x ocular lens, what would be the total magnification
    6·1 answer
  • A ballon holds 24L at 45 k . find the volume if the temperature is increased to 911 k
    12·1 answer
  • Why do you see something as white, black, or another specific color
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!