The wavelength of the radio waves is 3.04 cm.
<h3>Calculation:</h3>
λf = c
λ = c/f
where,
λ = wavelength
c = speed of light
f = frequency
Given,
f = 98.6 MHz = 98.6 × 10⁶
c = 3 × 10⁸
To find,
λ =?
Put the values in the formula,
λ = c/f
λ = 3 × 10⁸/98.6 × 10⁶
= 0.0304 × 10² m
= 3.04 cm
Therefore, the wavelength of the radio waves is 3.04 cm.
Learn more about the calculation of wavelength here:
brainly.com/question/8422432
#SPJ4
Answer:
Explanation:
The wording on some of these choices is very strange; I'm not sure exactly what they are stating. First of all, A. is definitely a choice because if both the charges were opposite, they would be attracted to one another as opposed to be repelled away from one another, as they are when they are both positive. What happens is that the charges go OUT from the positive charge and INTO the negative; so as far as the field lines around both charges would change direction...no; only the direction of the field lines would change on the positive charge (which is the one on the left). In that space where D is filled in by the field lines going OUT of the positive charge and INTO the negative one, the lines there are naturally closer together, and that is the point where the charge is the greatest. So if that is what is meant by the field lines getting closer together, then yes, they do. As far as choice D. again the field lines on the negative charge don't change, only the ones on the positive charge change.
Answer:
The comparisons are;
The height of the bromine in the 50 ml beaker will be twice that of the 100 ml beaker
The measurement of the volume with the 50 ml beaker will be more accurate than the measurement taken with the 100 ml beaker, because the differences in the height of the bromine in the 50 ml beaker is more obvious than the differences measured with the 100 ml beaker.
The actual volume of bromine in both beakers will be equivalent
Explanation:
The properties of a liquid are;
1) The volume of a liquid is relatively fixed at conditions that are suitable for it to remain in the liquid state compared to the volume occupied by a gas
2) A liquid will assume the shape of a container in which it is placed
3) The surface of a liquid in a container is flat due in order that the attractive forces between the molecules of the liquid at the surface and inside the body of the liquid should be in equilibrium
Therefore, given that the volume of the Bromine is measured in 50 ml beaker and a 100 ml beaker, there will be differences in the measured height of the same volume of bromine in each beaker.
I think it's 45 miles. Don't know for sure though