Answer:
the nucleus is the center of the atom, made up of protons and neutrons, without the nucleus you'd just have a bunch of electrons floating around; the nucleus is positively charged
protons are the positively charged particles that sit within the nucleus
neutrons are particles of no charge that sit within the nucleus, and because they have no charge, they do not cancel out the positive charge of the protons, making the nucleus positive
electrons are negatively charged particles that float around the nucleus in an area known as the electron cloud, they orbit around the nucleus because they are attracted to the positive charge of the nucleus (caused by the protons), with charges, opposites attract
Explanation:
The empirical formula : C₁₂H₄F₇
The molecular formula : C₂₄H₈F₁₄
<h3>Further explanation</h3>
mol C (MW=12 g/mol)

mol H(MW=1 g/mol) :

mol F(MW=19 g/mol)

mol ratio of C : H : O =1.52 : 0.51 : 0.89=3 : 1 : 1.75=12 : 4 : 7
Empirical formula : C₁₂H₄F₇
(Empirical formula)n=molecular formula
( C₁₂H₄F₇)n=562 g/mol
(12.12+4.1+7.19)n=562
(281)n=562⇒ n =2
Molecular formula : C₂₄H₈F₁₄
Molar mass is the mass of a given substance divided by the amount of that substance, measured in g/mol.
Answer: Option (4) is the correct answer.
Explanation:
It is known that density is mass divided by volume.
Mathematically, Density = 
Since, density is directly proportional to mass. So, more is the mass of an element more will be its density.
Mass of magnesium is 24.305 g/mol.
Mass of barium is 137.327 g/mol.
Mass of beryllium is 9.012 g/mol
Mass of radium is 226 g/mol.
Hence, radium has more mass therefore it will have the greatest density at STP.
Answer:
b. Second order in NO and first order in O₂.
Explanation:
A. The mechanism
![\rm 2NO\xrightarrow[k_{-1}]{k_{1}}N_{2}O_{2} \, (fast)\\\rm N_{2}O_{2} + O_{2}\xrightarrow{k_{2}} 2NO_{2} \, (slow)](https://tex.z-dn.net/?f=%5Crm%202NO%5Cxrightarrow%5Bk_%7B-1%7D%5D%7Bk_%7B1%7D%7DN_%7B2%7DO_%7B2%7D%20%5C%2C%20%28fast%29%5C%5C%5Crm%20N_%7B2%7DO_%7B2%7D%20%2B%20O_%7B2%7D%5Cxrightarrow%7Bk_%7B2%7D%7D%202NO_%7B2%7D%20%5C%2C%20%28slow%29)
B. The rate expressions
![-\dfrac{\text{d[NO]} }{\text{d}t} = k_{1}[\text{NO]}^{2} - k_{-1} [\text{N}_{2}\text{O}_{2}]^{2}\\\\\rm -\dfrac{\text{d[N$_{2}$O$_{2}$]}}{\text{d}t} = -\dfrac{\text{d[O$_{2}$]}}{\text{d}t} = k_{2}[ N_{2}O_{2}][O_{2}] - k_{1} [NO]^{2}\\\\\dfrac{\text{d[NO$_{2}$]}}{\text{d}t}= k_{2}[ N_{2}O_{2}][O_{2}]](https://tex.z-dn.net/?f=-%5Cdfrac%7B%5Ctext%7Bd%5BNO%5D%7D%20%7D%7B%5Ctext%7Bd%7Dt%7D%20%3D%20k_%7B1%7D%5B%5Ctext%7BNO%5D%7D%5E%7B2%7D%20-%20k_%7B-1%7D%20%5B%5Ctext%7BN%7D_%7B2%7D%5Ctext%7BO%7D_%7B2%7D%5D%5E%7B2%7D%5C%5C%5C%5C%5Crm%20-%5Cdfrac%7B%5Ctext%7Bd%5BN%24_%7B2%7D%24O%24_%7B2%7D%24%5D%7D%7D%7B%5Ctext%7Bd%7Dt%7D%20%3D%20-%5Cdfrac%7B%5Ctext%7Bd%5BO%24_%7B2%7D%24%5D%7D%7D%7B%5Ctext%7Bd%7Dt%7D%20%3D%20k_%7B2%7D%5B%20N_%7B2%7DO_%7B2%7D%5D%5BO_%7B2%7D%5D%20-%20k_%7B1%7D%20%5BNO%5D%5E%7B2%7D%5C%5C%5C%5C%5Cdfrac%7B%5Ctext%7Bd%5BNO%24_%7B2%7D%24%5D%7D%7D%7B%5Ctext%7Bd%7Dt%7D%3D%20k_%7B2%7D%5B%20N_%7B2%7DO_%7B2%7D%5D%5BO_%7B2%7D%5D)
The last expression is the rate law for the slow step. However, it contains the intermediate N₂O₂, so it can't be the final answer.
C. Assume the first step is an equilibrium
If the first step is an equilibrium, the rates of the forward and reverse reactions are equal. The equilibrium is only slightly perturbed by the slow leaking away of N₂O₂ to form product.
![\rm k_{1}[NO]^{2} = k_{-1} [N_{2}O_{2}]\\\\\rm [N_{2}O_{2}] = \dfrac{k_{1}}{k_{-1}}[NO]^{2}](https://tex.z-dn.net/?f=%5Crm%20k_%7B1%7D%5BNO%5D%5E%7B2%7D%20%3D%20k_%7B-1%7D%20%5BN_%7B2%7DO_%7B2%7D%5D%5C%5C%5C%5C%5Crm%20%5BN_%7B2%7DO_%7B2%7D%5D%20%3D%20%5Cdfrac%7Bk_%7B1%7D%7D%7Bk_%7B-1%7D%7D%5BNO%5D%5E%7B2%7D)
D. Substitute this concentration into the rate law
![\rm \dfrac{\text{d[NO$_{2}$]}}{\text{d}t}= \dfrac{k_{2}k_{1}}{k_{-1}}[NO]^{2} [O_{2}] = k[NO]^{2} [O_{2}]](https://tex.z-dn.net/?f=%5Crm%20%5Cdfrac%7B%5Ctext%7Bd%5BNO%24_%7B2%7D%24%5D%7D%7D%7B%5Ctext%7Bd%7Dt%7D%3D%20%5Cdfrac%7Bk_%7B2%7Dk_%7B1%7D%7D%7Bk_%7B-1%7D%7D%5BNO%5D%5E%7B2%7D%20%5BO_%7B2%7D%5D%20%3D%20k%5BNO%5D%5E%7B2%7D%20%5BO_%7B2%7D%5D)
The reaction is second order in NO and first order in O₂.