Population density increases
Answer:
Explanation:
Hello.
In this case, for the given chemical reaction, in order to compute the grams of cadmium hydroxide that would be yielded, we must first identify the limiting reactant by computing the yielded moles of that same product, by 20.0 grams of NaOH (molar mass = 40 g/mol) and by 0.750 L of the 1.00-M solution of cadmium nitrate as shown below considering the 1:2:1 mole ratios respectively:
Thus, since 20.0 grams of NaOH yielded less of moles of cadmium hydroxide, NaOH is the limiting reactant, therefore the mass of cadmium hydroxide (molar mass = 146.4 g/mol) is:
Best regards.
Answer:
The correct answer is B) HOOCCH2CH2COOH(aq)
Explanation:
Both Ka1 and Ka2 are low, so the acid will dissociate only slightly into HOOCCH2CH2COO- ions and even more slightly into -OOCCH2CH2COO- ions. The concentration of hydronium ions (H₃O⁺) will be consequently low. The species that will be in the highest concentration will be HOOCCH2CH2COOH (the weak acid not dissociated).
Answer:
Mercury has a density of 13.6g/mL
Answer:
The new temperature will be 2546 K or 2273 °C
Explanation:
Step 1: Data given
The initial temperature = 1000 °C =1273 K
The volume = 20L
The volume increases to 40 L
Step 2: Calculate the new temperature
V1/T1 = V2/T2
⇒with V1 = the initial volume = 20L
⇒with T1 = the initial temperature = 1273 K
⇒with V2 = the increased volume = 40L
⇒with T2 = the new temperature = TO BE DETERMINED
20L/ 1273 K = 40L / T2
T2 = 40L / (20L/1273K)
T2 = 2546 K
The new temperature will be 2546 K
This is 2546-273 = 2273 °C
Since the volume is doubled, the temperature is doubled as well