Answer:
M.Mass = 3.66 g/mol
Data Given:
M.Mass = M = ??
Density = d = 0.1633 g/L
Temperature = T = 273.15 K (Standard)
Pressure = P = 1 atm (standard)
Solution:
Let us suppose that the gas is an ideal gas. Therefore, we will apply Ideal Gas equation i.e.
P V = n R T ---- (1)
Also, we know that;
Moles = n = mass / M.Mass
Or, n = m / M
Substituting n in Eq. 1.
P V = m/M R T --- (2)
Rearranging Eq.2 i.e.
P M = m/V R T --- (3)
As,
Mass / Volume = m/V = Density = d
So, Eq. 3 can be written as,
P M = d R T
Solving for M.Mass i.e.
M = d R T / P
Putting values,
M = 0.1633 g/L × 0.08205 L.atm.K⁻¹.mol⁻¹ × 273.15 K / 1 atm
M = 3.66 g/mol
W=m₁/m₀=2^(-t/T)
t=4.6·10⁹ years
T=5·10¹⁰ years
w=2^(-4.6·10⁹/5·10¹⁰)
w=0.9382
w=93.82%
Answer:
Covalent compounds.
Explanation:
Hello,
In this case, when forming chemical bonds in order to form compounds, we say that if electrons are shared, covalent compounds are to be formed and they usually have subscripts that need prefixes to be named, for instance phosphorous pentachloride (PCl5), dichlorine heptoxide (Cl2O7), carbon tetrachloride (CCl4) and many others.
Regards.
Answer:

Explanation:
Here in Calcium Chloride ionic bond is present in between calcium and chlorine atoms. As we know according to Octet rule calcium have two excess atoms and for matching nearest noble gas electronic configuration. It donate two electrons to gain more stability and form
, while chlorine is deficient from one electron to meet nearest noble gas electronic configuration therefore two chlorine atoms accept excess electron from calcium individually and form two
ions.

Hence aqueous solution of calcium chloride breaks the ionic bond pairing in one
and two
ions: 
Energy, Temperature, and Changes of State
Matter either loses or absorbs energy when it changes from one state to another. For example, when matter changes from a liquid to a solid, it loses energy. The opposite happens when matter changes from a solid to a liquid.