Answer:
The speed of sound is affected by temperature and humidity. Because it is less dense, sound passes through hot air faster than it passes through cold air. ... The attenuation of sound in air is affected by the relative humidity. Dry air absorbs far more acoustical energy than does moist air.
Answer:
The pressure is constant, and it is P = 150kpa.
the specific volumes are:
initial = 0.062 m^3/kg
final = 0.027 m^3/kg.
Then, the specific work can be written as:

The fact that the work is negative, means that we need to apply work to the air in order to compress it.
Now, to write it in more common units we have that:
1 kPa*m^3 = 1000J.
-5.25 kPa*m^3/kg = -5250 J/kg.
Answer:
In thermodynamics, heat is transferred energy that moves between substances or systems because of their temperature difference. According to the first law of thermodynamic and the law of energy conversion s a form of energy, heat is cannot be created or destroyed only moves from one form to other.
The stone gets heat energy from fire and moves this heat energy or thermal energy to water as it cools off and the water warms up. Heat moves or is transferred spontaneously from the hot stone into the cold water. Eventually, the stone and water have the same temperature and water becomes heated. At the time of heat flowing out of the stone into the water, the heat energy became less ordered, due to spreading out through both the stone and the water. This is a net increase in entropy which is the second law of entropy.
Answer:
The paper focuses on the biology of stress and resilience and their biomarkers in humans from the system science perspective. A stressor pushes the physiological system away from its baseline state toward a lower utility state. The physiological system may return toward the original state in one attractor basin but may be shifted to a state in another, lower utility attractor basin. While some physiological changes induced by stressors may benefit health, there is often a chronic wear and tear cost due to implementing changes to enable the return of the system to its baseline state and maintain itself in the high utility baseline attractor basin following repeated perturbations. This cost, also called allostatic load, is the utility reduction associated with both a change in state and with alterations in the attractor basin that affect system responses following future perturbations. This added cost can increase the time course of the return to baseline or the likelihood of moving into a different attractor basin following a perturbation. Opposite to this is the system's resilience which influences its ability to return to the high utility attractor basin following a perturbation by increasing the likelihood and/or speed of returning to the baseline state following a stressor. This review paper is a qualitative systematic review; it covers areas most relevant for moving the stress and resilience field forward from a more quantitative and neuroscientific perspective.
Explanation:
Answer:
38 m/s
43 m/s
Explanation:
x = 18t + 5.0t²
The instantaneous velocity is the first derivative:
v = 18 + 10.t
At t = 2.0:
v = 18 + 10.(2.0)
v = 38 m/s
The average velocity is the change in position over change in time.
v = Δx / Δt
v = [ (18t₂ + 5.0t₂²) − (18t₁ + 5.0t₁²) ] / (t₂ − t₁)
Between t = 2.0 and t = 3.0:
v = [ (18(3.0) + 5.0(3.0)²) − (18(2.0) + 5.0(2.0)²) ] / (3.0 − 2.0)
v = [ (54 + 45) − (36 + 20.) ] / 1.0
v = 99 − 56
v = 43 m/s