For an object to conduct electricity it should have free or delocalised electrons that are free to pass the charge and hence take part in conducting electricity.
From the given choices
Chlorine is a halogen existing as a diatomic gas. Iodine too is a halogen and 2 Iodine atoms held together by covalent bond. Cl - Cl bonds and I-I bonds are covalent bonds. the outer electrons of Cl and I take part in covalent bonds therefore they are fixed and not free to move about. therefore no free electrons to conduct electricity.
Sulfur is a solid that too is held together by covalent bonds so it does not have free electrons to conduct electricity.
Silver is a metal and a general property of metals are their ability to conduct electricity.
metal structure are metal ions tightly packed together. when the metal atoms are tightly packed their valence electrons are removed and delocalised. Positively charged metal ions are embedded in a sea of delocalised electrons.
therefore there are delocalised electrons that can conduct electricity
answer is 3) silver
<em>Answer</em><em>:</em>
<em>Glycolysis</em>
<em>E</em><em>xplanation</em><em> </em><em>:</em>
Glycolysis is the first step in the breakdown of glucose to extract energy for cell metabolism.Many living organisms carry out glycolysis as part of their metabolism. Glycolysis takes place in the cytoplasm of most prokaryotic and all eukaryotic cells.
I can =335ml
2cans=?
2cans×335ml÷1
= 670ml
Answer:
<u>Models are limited by science - the more that was discovered, the better the model could be made.</u>
Explanation:
Models in science are meant to represent things in science. Since science controls the reliability of a model, when science changes, so does the model. Otherwise the model would be pseudoscientific.
Hey there! Hello!
Not sure if you still need the answer to this question, but I'd love to help out if you do.
So, the way to balance this equation is pretty simple. First, you need to keep in mind that molecules of hydrogen and oxygen do not come in single molecules, but in bonded pairs, represented by H2 and O2.

But, that's incorrect. The combination of 2 hydrogen molecules with 1 oxygen molecule yields water, but that leaves one oxygen molecule leftover. When broken down, this is how many of each molecule is on each side of the previously stated equation:
Left:
H: 2
O: 2
Right:
H: 2
O: 1
So we have to multiply H2O on the right side by 2 in order to get this:

Left:
H: 2
O: 2
Right:
H: 4
O: 2
The last step is to multiply H2 on the left by two to make it match up with the right side, balancing the equation:

Left:
H: 4
O: 2
Right:
H: 4
O: 2
That makes our equation balanced! I hope this helped you out, feel free to ask any additional questions if you need further clarification. :-)