Answer:
Depends on what are you refering to
Explanation:
So depending on what you are looking for (your question is quite vauge)
there are 5 atoms of the comopound (K2CO3)
within that compound, there are 2 atoms of Potassium and 1 atom of Carbonate. Within Carbonate there are 4 atoms (1 carbon and 3 oxygens)
so answers may be
5, 15, or 25.
I hope this helps.
The 3% mass/volume H₂O₂ means 3 g of H₂O₂ in 100 ml of water.
Now, Molarity (M) = No. of moles of H₂O₂ / Volume of solution in liter
No. of moles of H₂O₂ = Mass / Molar mass = 3 g / 34 g/mol = 0.088 mol
So, molarity = 0.088 × 1000 ml / 100 ml = 0.88 M
In case of 2.25 % H₂O₂,
No of moles = 2.25 g / 34 g/mol = 0.066 mol
Molarity = 0.066 mol / 0.100 L = 0.66 M.
- The molar mass of 0.458-gram sample of gas having a volume of 1.20 l at 287 k and 0.980 atm is 9.15g/mol.
- If this sample was placed under extreme pressure, the volume of the sample will decrease.
<h3>How to calculate molar mass?</h3>
The molar mass of a substance can be calculated by first calculating the number of moles using ideal gas law equation:
PV = nRT
Where;
- P = pressure
- V = volume
- T = temperature
- R = gas law constant
- n = no of moles
0.98 × 1.2 = n × 0.0821 × 287
1.18 = 23.56n
n = 1.18/23.56
n = 0.05moles
mole = mass/molar mass
0.05 = 0.458/mm
molar mass = 0.458/0.05
molar mass = 9.15g/mol
- Therefore, the molar mass of 0.458-gram sample of gas having a volume of 1.20 l at 287 k and 0.980 atm is 9.15g/mol
- If this sample was placed under extreme pressure, the volume of the sample will decrease.
Learn more about gas law at: brainly.com/question/12667831