Answer:
90 N
Explanation:
The electrostatic force between two charges is given by:

where
k is the Coulomb's constant
q1, q2 are the two charges
r is the separation between the charges
In this problem we have
q1 = q2 = 0.005 C
r = 50 m
So the electrostatic force is

Given:
10^10 electrons per second
To justify that coulomb is a very large unit for practical use, we need to convert the quantity of electron given to Coulombs:
From literature,
1 Coulomb is equivalent to 6.242×10^18 electrons<span>.
So,
= 10^10 electrons * (1 coulomb/</span><span>6.242×10^18</span> electrons) / second
<span>= 1.602 x 10^-9 coulumbs
This value is too small to be used in an actual setting.
</span><span>
</span>
The answer is c, because ball is falling so its gravitationl potential energy decreases, but it kinetic energy increases. Energy is always conserved.
Report this clown who put the first answer he’s trying to get your ip
Conduction is a mode of transfer of heat there