Answer:
<h3>The answer is 15 N</h3>
Explanation:
The force acting on an object can be found by using the formula
<h3>Force = mass × acceleration</h3>
From the question
mass = 50 g = 0.05 kg
acceleration = 300 m/s²
We have
force = 0.05 × 300
We have the final answer as
<h3>15 N</h3>
Hope this helps you
An elastic collision is one in which the system does not experience a net loss of kinetic energy as a result of the collision. In elastic collisions, momentum and kinetic energy are both conserved.
<h3>Explain about the Elastic Collision?</h3>
A collision between two bodies in physics is referred to as an elastic collision if their combined kinetic energy stays constant. There is no net conversion of kinetic energy into other forms, such as heat, noise, or potential energy, in an ideal, fully elastic collision
An example of an elastic collision is when two balls collide at a pool table. It is an elastic collision when you throw a ball on the ground and it bounces back into your hand because there is no net change in the kinetic energy.
If there is no kinetic energy lost in the impact, the collision is said to be perfectly elastic. A collision is considered to be inelastic if any of the kinetic energy is converted to another kind of energy during the collision.
To learn more about Elastic Collision refer to:
brainly.com/question/7694106
#SPJ4
v
Convert the given temperatures from celsius to kelvin since we are dealing with gas.
To convert to kelvin, add 273.15 to the temperature in celsius.
T1 = 22 + 273.15 = 295.15 k
T2 = 4 + 273.15 = 277.15 k
V1 = 0.5 L
Let's find the final volume (V2).
To solve for V2 apply Charles Law formula below:
519.75N
explanation: good luck on whatever assignment
To solve this problem we will use the concepts related to Torque as a function of the Force in proportion to the radius to which it is applied. In turn, we will use the concepts of energy expressed as Work, and which is described as the Torque's rate of change in proportion to angular displacement:

Where,
F = Force
r = Radius
Replacing we have that,



The moment of inertia is given by 2.5kg of the weight in hand by the distance squared to the joint of the body of 24 cm, therefore


Finally, angular acceleration is a result of the expression of torque by inertia, therefore



PART B)
The work done is equivalent to the torque applied by the distance traveled by 60 °° in radians
, therefore


