Answer:
the smallest mass of material that can sustain a chain reaction
Explanation:
Critical mass refers to the smallest possible mass of a fissionable material that can sustain a chain reaction
Answer:
14,938 tablets.
Explanation:
WE divide:
1.21 kg / 81 mg
1.21 kg = 1,210 g = 1.210,000 mg.
So it is 1,210,000 / 81
= 14,938 tablets.
The dependant variable is what you measure during the experiment and what is affected in the experiment (this is for question 4) so the answer would be D
Answer:
3NaOH (aq) + Fe(NO₃)₃ (aq) → Fe(OH)₃ (s) + 3NaNO₃ (aq)
Explanation:
Step 1: RxN
NaOH (aq) + Fe(NO₃)₃ (aq) → Fe(OH)₃ (s) + NaNO₃ (aq)
Step 2: Balance RxN
We need 3 OH's on both sides.
We also need 3 NO₃'s on both side.
- This will make it so we also need 3 Na's on both side
3NaOH (aq) + Fe(NO₃)₃ (aq) → Fe(OH)₃ (s) + 3NaNO₃ (aq)
Answer:
The correct answer is 40.7 grams.
Explanation:
Based on the given information, the volume of copper sulfate added to the solution is 255 ml or 0.255 L. The molarity of copper sulfate is not given, so let us consider it to be 1 M, which can also be written as 1 moles per liter.
The moles of copper sulfate can be determined by using the formula,
Moles = Molarity * Volume in Liters
Moles of CuSO4 = 1 moles/Liter * 0.255 L
Moles of CuSO4 = 0.255 moles
The mass of CuSO4 added in the solution will be,
Mass of CuSO4 = Moles * Molecular mass
= 0.255 moles * 159.609 grams per mole
= 40.7 grams.