1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
iVinArrow [24]
3 years ago
15

An asteroid is on a collision course with Earth. An astronaut lands on the rock to bury explosive charges that will blow the ast

eroid apart. Most of the small fragments will miss the Earth, and those that fall into the atmosphere will produce only a beautiful meteor shower. The astronaut finds that the density of the spherical asteroid is equal to the average density of the Earth. To ensure its pulverization, she incorporates into the explosives the rocket fuel and oxidizer intended for her return journey. What maximum radius can the asteroid have for her to be able to leave it entirely simply by jumping straight up
Physics
1 answer:
forsale [732]3 years ago
7 0

Answer:

The maximum radius the asteroid can have for her to be able to leave it entirely simply by jumping straight up is approximately 1782.45 meters

Explanation:

Whereby the height the astronaut can jump on Earth = 0.500 m, we have the following kinematic equation;

v² = u² - 2·g·h

Where;

v = The final velocity

u = The initial velocity

g = The acceleration due to gravity ≈ 9.8 m/s²

h = The height she jumps

At the maximum height, h_{max} = 0.500 m, she jumps, v = 0, therefore, we have;

0² = u² - 2·g·h_{max}

u² = 2 × 9.8 × 0.5 = 9.8

u = √9.8 ≈ 3.13

u = 3.13 m/s

Her initial jumping velocity ≈ 3.13 m/s

Escape velocity, v_e = \sqrt{\dfrac{2 \cdot G \cdot M}{r} }

Where;

M = The mass of the asteroid

G = The Universal gravitational constant = 6.67408 × 10⁻¹¹ m³/(kg·s²)

r = The radius of the asteroid

The average density of the Earth = 5515 kg/m³

The mass of the asteroid, M = Density × Volume = 5515 kg/m³× 4/3 × π × r³

The escape velocity, she has, v_e ≈ 3.13 m/s is therefore;

3.13 = \sqrt{\dfrac{2 \times 6.67408 \times 10^{-11} \times 5515 \times \frac{4}{3} \times \pi \times r^3}{r} } = r \times \sqrt{3.084 \times 10^{-6}}

r = \dfrac{3.13}{ \sqrt{3.084 \times 10^{-6}}} \approx 1782.45

Therefore, the maximum radius of the asteroid can have for her jumping velocity to be equal to the escape velocity for her to be able to leave it entirely simply by jumping straight up = r ≈ 1782.45 meters.

You might be interested in
A 22.0 kg child slides down a slide that makes a 37.0° angle with the horizontal. (a) What is the magnitude of the normal force
patriot [66]

Answer:

(a) 172.185 N

(b) 53^{\circ}

Solution:

As per the question:

Mass of the child, m = 22.0 kg

Angle, \theta = 37.0^{\circ}

Now,

(a) The magnitude of the normal force exerted by the slide on the child:

F_{N} = mgcos\theta

F_{N} = 22\times 9.8cos37^{\circ} = 172.185\ N

Now,

(b) The angle from the horizontal at which the force is directed is:

90^{\circ} - 37^{\circ} = 53^{\circ}

6 0
3 years ago
A girl pushes a 1.04 kg book across a table with a horizontal applied force 10 points
mr Goodwill [35]

Answer:

Approximately 11.0\; \rm m \cdot s^{-1}. (Assuming that g = 9.81 \; \rm N \cdot kg^{-1}, and that the tabletop is level.)

Explanation:

Weight of the book:

W = m \cdot g = 1.04 \; \rm kg \times 9.81\; \rm N \cdot kg^{-1} \approx 10.202\; \rm N.

If the tabletop is level, the normal force on the book will be equal (in magnitude) to weight of the book. Hence, F(\text{normal force}) \approx 10.202\; \rm N.

As a side note, the F_N and W on this book are not equal- these two forces are equal in size but point in the opposite directions.

When the book is moving, the friction F(\text{kinetic friction}) on it will be equal to

  • \mu_{\rm k}, the coefficient of kinetic friction, times
  • F(\text{normal force}), the normal force that's acting on it.

That is:

\begin{aligned}& F(\text{kinetic friction}) \\ &= \mu_{\rm k}\cdot F(\text{normal force})\\ &\approx 0.35 \times 10.202\; \rm N \approx 3.5708\; \rm N\end{aligned}.

Friction acts in the opposite direction of the object's motion. The friction here should act in the opposite direction of that 15.0\; \rm N applied force. The net force on the book shall be:

\begin{aligned}& F(\text{net force})  \\ &= 15.0 \; \rm N - F(\text{kinetic friction}) \\& \approx 15.0 - 3.5708\; \rm N \approx 11.429\; \rm N\end{aligned}.

Apply Newton's Second Law to find the acceleration of this book:

\displaystyle a = \frac{F(\text{net force})}{m} \approx \frac{11.429\; \rm N}{1.04\; \rm kg} \approx 11.0\; \rm m \cdot s^{-2}.

6 0
3 years ago
I WILL GIVE BRAINLIEST!!!
astra-53 [7]

Answer:

is that high school work??? cause I don't know it and I'm about to go to high school

7 0
3 years ago
Pablo's engineering team has developed a new material that is strong enough to withstand major impacts, including bullets, witho
marin [14]

Answer:

the answer is c

Explanation:

4 0
3 years ago
Induced EMF and Current in a Shrinking LoopShrinking Loop. A circular loop of flexible iron wire has an initial circumference of
vodomira [7]

Answer:

Explanation:

Let c be the circumference and r be the radius

c = 2πr , r = c / 2π , area A = π r² = π (c/2π )²  = (1/4π) x c²

flux (ψ) = BA = 1 X 1/4π X c²

dψ/dt = 1/4π x 2c dc/dt =1/2π x c x dc/dt

at t = 8 s

c = 161 - 13 x 8 = 57 cm , dc/dt = 13 cm/s  

e = dψ/dt = (1 / 2π )x 57 x 13 x 10⁻⁴ = 118 x 10⁻⁴ V.

4 0
3 years ago
Other questions:
  • In which of the following cases is the torque about the shoulder due to the weight of the arm the greatest? Case 1: A person hol
    10·1 answer
  • Consider two identical springs. At the start of an experiment, Spring A is already stretched out 3 cm, while Spring B remains at
    12·1 answer
  • um ima em forma de barra atravessa uma espira retangular, como mostra a imagem. Sabendo que esse e um caso em que o fluxo magnet
    6·1 answer
  • An object's motion changes A. only if the object is at rest when a force acts upon it. B. only when a nonzero net force is appli
    6·1 answer
  • It takes 20 Joules of Work to push 4 coulombs of charges Across the filament of a bulb.'find the potential difference Across the
    11·1 answer
  • TRUE or FALSE: Feeling "weightless" can be the result of accelerating downwards towards Earth.
    15·1 answer
  • a wave's amplitude is 0.5 meters. if its amplitude is increased to 1 meter, how much does its energy change?​
    10·1 answer
  • 10. How far did the crate move horizontally?
    14·1 answer
  • Need help ASAP, 1 MC
    15·1 answer
  • A ball of mass m and weight mg is held at rest by two strings. One string makes an angle θ with the vertical. The other is horiz
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!