1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
iVinArrow [24]
3 years ago
15

An asteroid is on a collision course with Earth. An astronaut lands on the rock to bury explosive charges that will blow the ast

eroid apart. Most of the small fragments will miss the Earth, and those that fall into the atmosphere will produce only a beautiful meteor shower. The astronaut finds that the density of the spherical asteroid is equal to the average density of the Earth. To ensure its pulverization, she incorporates into the explosives the rocket fuel and oxidizer intended for her return journey. What maximum radius can the asteroid have for her to be able to leave it entirely simply by jumping straight up
Physics
1 answer:
forsale [732]3 years ago
7 0

Answer:

The maximum radius the asteroid can have for her to be able to leave it entirely simply by jumping straight up is approximately 1782.45 meters

Explanation:

Whereby the height the astronaut can jump on Earth = 0.500 m, we have the following kinematic equation;

v² = u² - 2·g·h

Where;

v = The final velocity

u = The initial velocity

g = The acceleration due to gravity ≈ 9.8 m/s²

h = The height she jumps

At the maximum height, h_{max} = 0.500 m, she jumps, v = 0, therefore, we have;

0² = u² - 2·g·h_{max}

u² = 2 × 9.8 × 0.5 = 9.8

u = √9.8 ≈ 3.13

u = 3.13 m/s

Her initial jumping velocity ≈ 3.13 m/s

Escape velocity, v_e = \sqrt{\dfrac{2 \cdot G \cdot M}{r} }

Where;

M = The mass of the asteroid

G = The Universal gravitational constant = 6.67408 × 10⁻¹¹ m³/(kg·s²)

r = The radius of the asteroid

The average density of the Earth = 5515 kg/m³

The mass of the asteroid, M = Density × Volume = 5515 kg/m³× 4/3 × π × r³

The escape velocity, she has, v_e ≈ 3.13 m/s is therefore;

3.13 = \sqrt{\dfrac{2 \times 6.67408 \times 10^{-11} \times 5515 \times \frac{4}{3} \times \pi \times r^3}{r} } = r \times \sqrt{3.084 \times 10^{-6}}

r = \dfrac{3.13}{ \sqrt{3.084 \times 10^{-6}}} \approx 1782.45

Therefore, the maximum radius of the asteroid can have for her jumping velocity to be equal to the escape velocity for her to be able to leave it entirely simply by jumping straight up = r ≈ 1782.45 meters.

You might be interested in
What is 34 + (5) × (1.2465) written with the correct number of significant figures?
bonufazy [111]

Answer: 40

Explanation:

= 34 + 5 * 1.2465

= ‭40.2325‬

= 40

The number of significant figures in the answer should be the same as the number with the least number of significant figures that any of the digits in the equation have.

32 has 2 significant figures so the answer has to be 2 significant figures which is 40.

7 0
3 years ago
A 10 kg mass rests on a table. What acceleration will be generated when a force of 5 N is applied? a 0.5 m/s2 b 3.5 m/s2 c 5 m/s
rosijanka [135]

Answer:

a= 0.5m/s^2

Explanation:

Force applied on an object is known as

F=m.a  (Newton's second law states it)

a=F/m

a=5/10=0.5m/s^2

3 0
3 years ago
A man travels 15 km east before turning around and heading 5 km west. What is his displacement?
navik [9.2K]

Answer:

10 km East

Displacement is the shortest path between two points.

6 0
3 years ago
Read 2 more answers
Your partner has been working on your group's circuit and has left the work area. before you begin working on the circuit, what
Brrunno [24]
You should disconnect all wires from the circuit or make sure the switch is off or batteries are out
5 0
2 years ago
If a student flicks a stationary 0.1 kg ball with 5N of force for 0.1 seconds. What is its final
Alisiya [41]

5m/s

Explanation:

Given parameters:

Mass of ball = 0.1kg

Force on the ball = 5N

time taken = 0.1s

Unknown:

final speed of the ball = ?

Solution:

According to newton's second law "the net force on a body is the product of its mass and acceleration".

  Force = mass x acceleration      equation 1

Acceleration =

  V is the final velocity

  U is the initial velocity

  T is the time taken

 U = O since it is a stationary body;

      a = \frac{V}{T}

Input "a" into equation 1

  F = m x \frac{V}{T}

 5 = 0.1 x \frac{V}{0.1}

 V = 5m/s

learn more:

Newton's laws brainly.com/question/11411375

#learnwithBrainly

3 0
3 years ago
Other questions:
  • action and reaction are equal in magnitude and opposite direction then why they don't balance each other
    15·1 answer
  • What is measurement​
    14·1 answer
  • Your license can be suspended for 90 days if you accumulate
    5·1 answer
  • Which of the following is the best example of kinetic energy? A. A bowling ball rolling toward the pins B. A horse standing in a
    14·1 answer
  • The masses of blocks A and B in the figure (Figure 1) are 20.0 kg and 10.0 kg, respectively. The blocks are initially at rest on
    9·1 answer
  • What’s the answer to this one?
    11·1 answer
  • The "zone of avoidance" a) Accounts for the absence of any planet between the orbits of Mars and Jupiter Prevents collisions bet
    5·1 answer
  • A rocket is fired vertically upwards starting frkm rest. It accelerates at 30m/s for 4secs. At the end of 4secs it runs out of f
    13·1 answer
  • Help please!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
    9·1 answer
  • (i) What happens to the magnitude of the charge on each plate of a capacitor if the potential difference between the conductors
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!