Answer:
The final speed of puck 1 is 0.739 m/s towards west and puck 2 is 2.02 m/s towards east .
Explanation:
Let us consider east as positive direction and west as negative direction .
Given
mass of puck 1 , 
mass of puck 2 , 
initial speed of puck 1 , 
initial speed of puck 2 , 
Final speed of puck 1 and puck 2 be
respectively
Apply conservation of linear momentum

=>
=>
-----(A)
Since collision is perfectly elastic , coefficient restitution e=1

=>
------(B)
From equation (A) and (B)

and 
Thus the final speed of puck 1 is 0.739 m/s towards west and puck 2 is 2.02 m/s towards east .
Answer:
With changing speed and/or in a circle
Answer:
Explanation:
Assuming the ground is level as well.
F = ma
a = F/m
a = (2000 - 350) / 1500
a = 1.1 m/s²
The best answer is
A) <span>The atoms in the mineral get rearranged
Over time, and under great pressure, the atoms of a substance can become rearranged, forming a new substance. For example, the intense pressure that carbon underground experiences, perhaps in the form of coal, can rearrange the atoms of the substance to create a diamond. </span>
Answer:
(a) 6.567 * 10^15 rev/s or hertz
(b) 8.21 * 10^14 rev/s or hertz
Explanation:
Fn= 4π^2k^2e^4m * z^2/(h^3*n^3)
Where Fn is frequency at all levels of n.
Z = 1 (nucleus)
e = 1.6 * 10^-19c
m = 9.1 * 10^-31 kg
h = 6.62 * 10-34
K = 9 * 10^9 Nm2/c2
(a) for groundstate n = 1
Fn = 4 * π^2 * (9*10^9)^2*(1.6*10^-19)^4* (9.1 * 10^-31) * 1 / (6.62 * 10^-31)^3 = 6.567 * 10^15 rev/s
(b) first excited state
n = 1
We multiple the groundstate answer by 1/n^3
6.567 * 10^15 rev/s/ 2^3
F2 = 8.2 * 10^ 14 rev/s