The balanced half reactions are
4 Fe2+ ====> 4 Fe3+ + 4 e-
<span>MnO42- + 8 H+ + 4 e- ===> Mn2+ + 4 H2O
The net ionic equation is
4 Fe2+ + </span>MnO42- + 8 H+ ===> 4 Fe3+ + Mn2+ + 4 H2O<span />
Answer:
Newton’s law of inertia is illustrated in tests with crash dummies, seat belts, and airbags, wherein the object stays in motion unless there is an unbalanced force applied to it.
Inertia is the main reason why there are seatbelts and airbags in the car. In this case, when the seatbelt is trapped to the passenger, the passenger experiences the same state of motion as the car. If the car accelerates/decelerates, the passenger experiences it too. When the car experiences collision, an unbalance force is acted upon it. This causes the car to stop abruptly, and the passenger shares the same state of motion because of the seatbelt and the airbags that apply the unbalanced force to stop the passenger to go forward.
Cave rock neutralizes pollutants in groundwater.
Anywhere between 5sogt2 and 776sogt2
Answer:
0.0119
Explanation:
There was a part missing. I think this is the whole question:
<em>Before any reaction occurs, the concentration of A in the reaction below is 0.0510 M. What is the equilibrium constant if the concentration of A at equilibrium is 0.0153 M?</em>
A (aq) ⇌ 2B (aq) + C(aq)
<em>Remember to use correct significant figures in your answer. Do not include units in your response.</em>
First, we have to make an ICE Chart, which stands for initial, change and equilibrium. We will call "x" unknown concentrations.
A (aq) ⇌ 2B (aq) + C (aq)
I 0.0510 0 0
C -x +2x +x
E 0.0510-x 2x x
Since the concentration at equilibrium of A is 0.0153 M, we get

We can use the value of x to calculate the concentrations at equilibrium.
![[A]e = 0.0153 M \\[B]e = 2x = 2(0.0357) = 0.0714 M \\[C]e = x = 0.0357 M \\](https://tex.z-dn.net/?f=%5BA%5De%20%3D%200.0153%20M%20%5C%5C%5BB%5De%20%3D%202x%20%3D%202%280.0357%29%20%3D%200.0714%20M%20%5C%5C%5BC%5De%20%3D%20x%20%3D%200.0357%20M%20%5C%5C)
The equilibrium constant, Kc, is the ratio of the equilibrium concentrations of products over the equilibrium concentrations of reactants each raised to the power of their stoichiometric coefficients.
![Kc = \frac{[B]^{2} \times [C]}{[A]} = \frac{0.0714^{2} \times 0.0357}{0.0153} = 0.0119](https://tex.z-dn.net/?f=Kc%20%3D%20%5Cfrac%7B%5BB%5D%5E%7B2%7D%20%20%5Ctimes%20%5BC%5D%7D%7B%5BA%5D%7D%20%3D%20%5Cfrac%7B0.0714%5E%7B2%7D%20%20%5Ctimes%200.0357%7D%7B0.0153%7D%20%3D%200.0119)
The equilibrium constant for this reaction at equilibrium is 0.0119.
You can learn more about equilibrium here: brainly.com/question/4289021