I believe Box B will have a greater gravitational pull because the gravitational pull of an object depends on its mass. The more mass an object has, the greater its gravitational pull will become.
For example, we can take planets. Naturally, they are round because once upon a time there was a larger piece of rock that attracted others. But the size of the rock won't matter, it's the weight that matters. If the rock weighed nothing, the other rocks would just rebound upon contact. But if the rock weighed a lot, then things wouldn't so easily rebound and might actually stick to it.
<span>The inner core is liquid and moving.</span>
Answer:
metre per seconds
Explanation:
because velocity = distance ÷ time
Take into account that in a standing wave, the frequency f of the points executing simple harmonic motion, is simply a multiple of the fundamental harmonic fo, that is:
f = n·fo
where n is an integer and fo is the first harmonic or fundamental.
fo is given by the length L of a string, in the following way:
fo = v/λ = v/(L/2) = 2v/L
becasue in the fundamental harmonic, the length of th string coincides with one hal of the wavelength of the wave.
Answer:the acceleration will double
Explanation: