Answer:
If the buoyant force is greater than the object's weight, the object will rise to the surface and float. If the buoyant force is less than the object's weight, the object will sink. If the buoyant force equals the object's weight, the object will remain suspended at that depth.
Explanation:
Not much explaining to do here!
Answer:
t = 1.41 sec.
Explanation:
If we assume that the acceleration of the blocks is constant, we can apply any of the kinematic equations to get the time since the block 2 was released till it reached the floor.
First, we need to find the value of acceleration, which is the same for both blocks.
If we take as our system both blocks, and think about the pulley as redirecting the force simply (as tension in the strings behave like internal forces) , we can apply Newton's 2nd Law, as they were moving along the same axis, aiming at opposite directions, as follows:
F = m₂*g - m₁*g = (m₁+m₂)*a (we choose as positive the direction of the acceleration, will be the one defined by the larger mass, in this case m₂)
⇒ a = (
= g/5 m/s²
Once we got the value of a, we can use for instance this kinematic equation, and solve for t:
Δx = 1/2*a*t² ⇒ t² = (2* 1.96m *5)/g = 2 sec² ⇒ t = √2 = 1.41 sec.
Answer:

Explanation:
The rotated angle is given by:

Since this is a quadratic equation it can be solved using:

Rewriting our equation:


Since
we discard the negative solution.

Using formula:
I=(1/2)*M*(R^2+r^2)
<span>I=0.5*0.715kg*[(12.7cm)^2+(10.7cm)^2] </span>
<span>I=98.6 kg*cm^2</span>
Answer:
The forces could be gravity, friction between the car and the ground, the force Katie is applying and the normal reaction.