Answer :
The balanced chemical reaction is,

From this balanced chemical reaction, we conclude that
2 moles of iron oxide react with the 3 moles of carbon to give 4 moles of iron and 3 moles of carbon dioxide.
Therefore, the valid mole ratio from the balanced chemical reaction is,

Answer:
The soup gets so hot it releases a gas state and it gets trapped in the lid. So the gas gets transformed into a gas into a liquid temperarily.
Explanation:
Answer:
a) f = 3.02x10¹⁵ s⁻¹, and λ = 99.4 nm.
b) 99.4 nm
Explanation:
a) The energy of radiation is given by:
E = h*f
Where h is the Planck constant (6.626x10⁻³⁴ J.s), and f is the frequency. To have the highest frequency, the energy must be the highest too, because they're directly proportional. So we must use E = -E1 = 20x10⁻¹⁹ J
20x10⁻¹⁹ = 6.626x10⁻³⁴xf
f = 3.02x10¹⁵ s⁻¹
The wavelenght is the velocity of light (3.00x10⁸ m/s) divided by the frequency:
λ = 3.00x10⁸/3.02x10¹⁵
λ = 9.94x10⁻⁸ m = 99.4 nm
b) To have the shortest wavelength, it must be the highest energy and frequency, so it would be the same as the letter a) 99.4 nm.
Gravity is the force of attraction between two objects, and Earth's gravity pulls matter downward, toward its center. It pulls precipitation down from clouds and pulls water downhill. Gravity also moves air and ocean water. ... Gravity pulls denser air and water downward, forcing less dense air and water to move upward.
Now that we have a background in the Lewis electron dot structure we can use it to locate the the valence electrons of the center atom. The valence-shell electron-pair repulsion (VSEPR) theory states that electron pairs repel each other whether or not they are in bond pairs or in lone pairs. Thus, electron pairs will spread themselves as far from each other as possible to minimize repulsion. VSEPR focuses not only on electron pairs, but it also focus on electron groups as a whole. An electron group can be an electron pair, a lone pair, a single unpaired electron, a double bond or a triple bond on the center atom. Using the VSEPR theory, the electron bond pairs and lone pairs on the center atom will help us predict the shape of a molecule.
The shape of a molecule is determined by the location of the nuclei and its electrons. The electrons and the nuclei settle into positions that minimize repulsion and maximize attraction. Thus, the molecule's shape reflects its equilibrium state in which it has the lowest possible energy in the system. Although VSEPR theory predicts the distribution of the electrons, we have to take in consideration of the actual determinant of the molecular shape. We separate this into two categories, the electron-group geometry and the molecular geometry.