____NaNO3 + ___PbO --> ___Pb(NO3)2 + ___Na[2]O
To balace the eqaution, you need to have the same number of atoms for each element on both the reactant (left) and product (right) side.
To start off, you wanna know the number of atoms in each element on both sides, so take it apart:
[reactants] [product]
Na- 1 Na- 2
N- 1 N- 2(it's 2 because the the subscript [2] is outside of the parenthesis)
O- 4 O- 7 (same reason as above)
Pb- 1 Pb- 1
Na is not balanced out, so add a coefficient to make it the same on both sides.In this case, multiply by 2:
2NaNO3
Now Na is balanced, but the N and O are also effected by this, so they also have to be multiplied by 2 and they become:
Na- 2 Na- 2
N- 2 N- 2 (it balanced out)
O- 7 (coefficient times subscript, plus lone O) O- 7 (balanced out)
Pb was already balanced so no need to mess with it, just put a 1 where needed (it doesn't change anything).
Now to put it back together, it will look like this:
2NaNO3 + 1PbO --> 1Pb(NO3)2 + 1Na[2]O
Answer : The partial pressure of
and
is, 216.5 mmHg and 649.5 mmHg
Explanation :
According to the Dalton's Law, the partial pressure exerted by component 'i' in a gas mixture is equal to the product of the mole fraction of the component and the total pressure.
Formula used :


So,

where,
= partial pressure of gas
= mole fraction of gas
= total pressure of gas
= moles of gas
= total moles of gas
The balanced decomposition of ammonia reaction will be:

Now we have to determine the partial pressure of
and 

Given:


and,

Given:


Thus, the partial pressure of
and
is, 216.5 mmHg and 649.5 mmHg
Answer:
Screening for the presence of drugs in serum and urine using different separation modes of capillary electrophoresis. The most common mode is capillary zone electrophoresis (CZE), in which charged analytes migrate in a buffer under the influence of an electric field.
Explanation:
This equation is balanced
The correct answer is A. The image shows a nuclear fission. This takes place in any of the heavy nuclei after capture of a neutron. This is the opposite of nuclear fusion. In this case, nuclei are broken down into two.