Answer:
270 m/s²
Explanation:
Given:
α = 150 rad/s²
ω = 12.0 rad/s
r = 1.30 m
Find:
a
The acceleration will have two components: a radial component and a tangential component.
The tangential component is:
at = αr
at = (150 rad/s²)(1.30 m)
at = 195 m/s²
The radial component is:
ar = v² / r
ar = ω² r
ar = (12.0 rad/s)² (1.30 m)
ar = 187.2 m/s²
So the magnitude of the total acceleration is:
a² = at² + ar²
a² = (195 m/s²)² + (187.2 m/s²)²
a = 270 m/s²
The correct answer is rock cycle
Answer: minimum speed of launch must be 7.45m/s
Explanation:
Given the following:
Height or distance (s) = 2.83m
The final velocity(Vf) at maximum height = 0
Upward motion, acceleration due to gravity(g) us negative = -9.8m/s^2
From the 3rd equation of motion:
V^2 = u^2 - 2gs
Where V = final velocity
u = initial velocity
Therefore, u = Vi
u = √Vf^2 - 2gs
u = √0^2 - 2(-9.8)(2.83)
u = √0 + 55.468
u = √55.468
u = 7.4476 m/s
u = 7.45m/s
Answer:
Explanation:
From newton's equation of motion of uniform acceleration
v = u + at
where v is final velocity , u is initial velocity , a is acceleration and time is t .
putting the values
v = 0 + .5 x 3 x 60 ( time in second = 3 x 60 s )
= 90 m /s
So , final velocity is 90 m /s .