Answer:
250 mL (total solution) = 104 mL (stock solution) + 146 mL (water)
Explanation:
Data Given
M1 = 6.00 M
M2 = 2.5 M
V1 = 250 mL
V2 = ?
Solution:
As the chemist needs to prepare 250 mL of solution from 6.00 M ammonium hydroxide solution to prepare a 2.50 M aqueous solution of ammonium hydroxide.
Now
first he have to determine the amount of ammonium hydroxide solution that will be taken from6.00 M ammonium hydroxide solution
For this Purpose we use the following formula
M1V1=M2V2
Put values from given data in the formula
6 x V1 = 2.5 x 250
Rearrange the equation
V1 = 2.5 x 250 /6
V1 = 104 mL
So 104 mL is the volume of the solution which we have to take from the 6.00 M ammonium hydroxide solution to prepare 2.5 M aqueous solution of ammonium hydroxide
But we have to prepare 250 mL of the solution.
so the chemist will take 104 mL from 6.00 M ammonium hydroxide solution and have to add 146 mL water to make 250 mL of new solution.
in this question you have to tell about the amount of water that is 146 mL
250 mL (total solution) = 104 mL (stock solution) + 146 mL (water)
Photosynthesis. Easy ;) have a nice day
Explanation:
The given data is as follows.
T =
= (120 + 273.15)K = 393.15 K,
As it is given that it is an equimolar mixture of n-pentane and isopentane.
So,
= 0.5 and
= 0.5
According to the Antoine data, vapor pressure of two components at 393.15 K is as follows.
(393.15 K) = 9.2 bar
(393.15 K) = 10.5 bar
Hence, we will calculate the partial pressure of each component as follows.

= 
= 4.6 bar
and, 
= 
= 5.25 bar
Therefore, the bubble pressure will be as follows.
P =
= 4.6 bar + 5.25 bar
= 9.85 bar
Now, we will calculate the vapor composition as follows.

= 
= 0.467
and, 
= 
= 0.527
Calculate the dew point as follows.
= 0.5,
= 0.5


= 0.101966
P = 9.807
Composition of the liquid phase is
and its formula is as follows.

= 
= 0.5329

= 
= 0.467
Answer: 6 atoms in total
Explanation:
It has one sodium atom, one hydrogen atom, one carbon atom, and three oxygen atoms.
No. The number of a protons is not equal to it's atomic weight, instead it is equal to the 'atomic number'