Answer:
1.28 m, 14 m/s
Explanation:
At the maximum height, the velocity is 0.
Given:
a = -9.8 m/s²
v₀ = 5.00 m/s
v = 0 m/s
x₀ = 0 m
Find:
x
v² = v₀² + 2a(x - x₀)
(0 m/s)² = (5.00 m/s)² + 2(-9.8 m/s²) (x - 0 m)
x = 1.28 m
The maximum speed is at the bottom of the well.
Given:
a = -9.8 m/s²
v₀ = 5.00 m/s
x₀ = 0 m
x = -8.5 m
Find:
v
v² = v₀² + 2a(x - x₀)
v² = (5.00 m/s)² + 2(-9.8 m/s²) (-8.5 m - 0 m)
v = -13.8 m/s
Rounded to 2 sig-figs, the maximum speed is 14 m/s.
The correct answer is D. Amount of time and area of physical contact between the substances.
Explanation:
Heat transfer refers to the flow of thermal energy or heat between two or more objects. This process involves multiple factors and implies heat from the hottest object goes to the coldest one until there is an equilibrium. To begin, heat transfer depends on the amount of thermal energy in the objects because objects must have a different amount of thermal energy for heat to flow.
Besides this, the amount of energy that flows depends on the time and the contact between the substances of objects. Indeed, objects need to be in contact or close to each other for heat to transfer, and the time needs to be enough for the process to occur. For example, if you place a pot over the fire just for a few seconds it is likely the heat transferred is minimal, which does not occur if you leave the pot more time. At the same time if the pot is in close contact with fire more heat will be transferred.-
Answer:
elastic partial width is 2.49 eV
Explanation:
given data
ER E = 250 eV
spin J = 0
cross-section magnitude σ = 1300 barns
peak P = 20ev
to find out
elastic partial width W
solution
we know here that
σ = λ²× W / ( E × π × P ) ...................1
put here all value
σ = (0.286)² × W ×
/ ( 250 × π × 20 )
1300 ×
= (0.286)² × W ×
/ ( 250 × π × 20 )
solve it and we get W
W = 249.56 ×
so elastic partial width is 2.49 eV
C.
It is a motion with uniform acceleration, meaning that the acceleration will not change.
The object is thrown upwards with a positive velocity. This shows that the upward direction is positive. The object will decelerate due to gravity at a magnitude of 9.81 m/s2. Therefore, the acceleration is -9.81 m/s2.
Note that even though the velocity of the object is momentarily 0 m/s at maximum height, there is still a constant acceleration.
This allows the object first decelerate upwards, then change direction at max height, and finally accelerate downwards. So in this case, the acceleration is always negative and unchanged.
Answer:
I = 0.0025 kg.m²
Explanation:
Given that
m= 2 kg
Diameter ,d= 0.1 m
Radius ,

R=0.05 m
The moment of inertia of the cylinder about it's axis same as the disc and it is given as

Now by putting the all values

I = 0.0025 kg.m²
Therefore we can say that the moment of inertia of the cylinder will be 0.0025 kg.m².