1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alexeev081 [22]
3 years ago
15

A 37.2 g sample of copper at 99.8 °C is carefully placed into an insulated container containing 188 g of water at 18.5 °C. Calcu

late the final temperature when thermal equilibrium is reached. Assume there is no energy transferred to or from the container. Specific heat capacities: Cu = 0.385 J g-1 °C-1 H2O = 4.184 J g-1 °C-1
Chemistry
1 answer:
klasskru [66]3 years ago
6 0

Answer:

T₂ = 19.95°C

Explanation:

From the law of conservation of energy:

Heat\ Lost\ by\ Copper = Heat\ Gained\ by\ Water\\m_cC_c\Delta T_c = m_wC_w\Delta T_w

where,

mc = mass of copper = 37.2 g

Cc = specific heat of copper = 0.385 J/g.°C

mw = mass of water = 188 g

Cw = specific heat of water = 4.184 J/g.°C

ΔTc = Change in temperature of copper = 99.8°C - T₂

ΔTw = Change in temperature of water = T₂ - 18.5°C

T₂ = Final Temperature at Equilibrium = ?

Therefore,

(37.2\ g)(0.385\ J/g.^oC)(99.8\ ^oC-T_2)=(188\ g)(4.184\ J/g.^oC)(T_2-18.5\ ^oC)\\99.8\ ^oC-T_2 = \frac{(188\ g)(4.184\ J/g.^oC)}{(37.2\ g)(0.385\ J/g.^oC)}(T_2-18.5\ ^oC)\\\\99.8\ ^oC-T_2 = (54.92) (T_2-18.5\ ^oC)\\54.92T_2+T_2 = 99.8\ ^oC + 1016.02\ ^oC\\\\T_2 = \frac{1115.82\ ^oC}{55.92}

<u>T₂ = 19.95°C</u>

You might be interested in
Which statement correctly pairs the climate factor with its effect on temperature? *
allochka39001 [22]

Answer:

A region on top of a mountain is cooler than at the base.

Explanation:

Pressure and temperature have direct relationship with each other. With the decrease in pressure, the temperature decreases and vice versa. When the air rises in the atmosphere, the pressure starts to fall. The low pressure at the peak of the mountains tends to cause the fall in temperature. It is because of this reason that it is cooler at the top of the mountain while the temperature is less cool in the foothills.

5 0
2 years ago
The density of copper is 8.9 g/mL. What is the volume of 20.5 g copper?
love history [14]

Answer:

density = 8.9 g/ml

m = 20.5 g

V = ... ?

density = m/V

V = m / density

= 20.5 / 8.9

= 2.30337 ml

3 0
3 years ago
1) Write the symbol and charge for each individual ion
ololo11 [35]

N -3

Ba +2

Sr +2

F -1

I -1

Ca +2

Mg +2

S -2

S -2

Al +3

//

Ba3N2

SrF2

CaI2

MgS

Al2S3

//

I don't really understand 2.

3 0
2 years ago
. Which type of energy is involved in the operation of simple machines?
quester [9]
Input an output  energy
4 0
3 years ago
How would a collapsing universe affect light emitted from clusters and superclusters? A. Light would acquire a blueshift. B. Lig
Lady_Fox [76]

Answer:

Choice A: Light would acquire a blueshift.

Explanation:

When a universe collapses, clusters of stars start to move towards each other. There are two ways to explain why light from these stars will acquire a blueshift.

Stars move toward each other; Frequency increases due to Doppler's Effect.

The time period t of a beam of light is the same as the time between two consecutive peaks. If \lambda is the wavelength of the beam, and both the source and observer are static, the time period T will be the same as the time it takes for light travel the distance of one \lambda (at the speed of light in vacuum, c).

\displaystyle t = \frac{\lambda}{c}.

Frequency f is the reciprocal of time period. Therefore

\displaystyle f = \frac{1}{t} = \frac{c}{\lambda}.

Light travels in vacuum at a constant speed. However, in a collapsing universe, the star that emit the light keeps moving towards the observer. Let the distance between the star and the observer be d when the star sent the first peak.

  • Distance from the star when the first peak is sent: d.
  • Time taken for the first peak to arrive: \displaystyle t_1 =\frac{d}{c}.

The star will emit its second peak after a time of. Meanwhile, the distance between the star and the observer keeps decreasing. Let v be the speed at which the star approaches the observer. The star will travel a distance of v\cdot t before sending the second peak.

  • Distance from the star when the second peak is sent: d - v\cdot t.
  • Time taken for the second peak to arrive: \displaystyle t_2 =t + \frac{d - v\cdot t}{c}.

The period of the light is t when emitted from the star. However, the period will appear to be shorter than t for the observer. The time period will appear to be:

\begin{aligned}\displaystyle t' &= t_2 - t_1\\ &= t + \frac{d - v\cdot t}{c} - \frac{d}{c}\\&= t + (\frac{d}{c} - \frac{v\cdot t}{c}) -\frac{d}{c}\\&= t - \frac{v\cdot t}{c} \end{aligned}.

The apparent time period t' is smaller than the initial time period, t. Again, the frequency of a beam of light is inversely proportional to its period. A smaller time period means a higher frequency. Colors at the high-frequency end of the visible spectrum are blue and violet. The color of the beam of light will shift towards the blue end of the spectrum when observed than when emitted. In other words, a collapsing universe will cause a blueshift on light from distant stars.

The Space Fabric Shrinks; Wavelength decreases as the space is compressed.

When the universe collapses, one possibility is that clusters of stars move towards each other. Alternatively, the space fabric might shrink, which will also bring the clusters toward each other.

It takes time for light from a distant cluster to reach an observer on the ground. The space fabric keeps shrinking while the beam of light makes its way through the space. The wavelength of the beam will shrink at the same rate. The wavelength of the beam of light will be shorter by the time the beam arrives at its destination.

Colors at the short-wavelength end of the visible spectrum are blue and violet. Again, the color of the light will shift towards the blue end of the spectrum. The conclusion will be the same: a collapsing universe will cause a blueshift on light from distant stars.

8 0
3 years ago
Other questions:
  • If you are given 1.709 moles of solute, and you dilute it to make 2.10 liters of solution, what is the resulting molarity (M)? (
    14·1 answer
  • In this molecule, what's the formal charge on the central O atom?
    11·2 answers
  • The combustion of 0.25 mol of an unknown organic compound results in the release of 320 kJ of energy. Which of the compounds in
    11·2 answers
  • Which contributes to the polarity of a water molecule?
    5·2 answers
  • people are burning fossil fuels at a very fast rate. What is the effects? PLZ answe quick its due 2morrow
    15·1 answer
  • Please Help Why is laboratory safety important? Describe a scenario illustrating your reason(s).
    15·1 answer
  • Will give brainlist
    12·2 answers
  • Select the correct answer.
    9·1 answer
  • It is important to understand the differences between chemical and physical changes. Chemical changes result in new substances,
    14·1 answer
  • Please solve this for points please dont just write random stuff<br><br> 40 points! and brainliest
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!