Answer:
D. The electrochemical reaction of the battery must be reversible.
Explanation:
The batteries are based on the production of an electric flux given by a<u> redox reaction</u>. This reaction is <u>spontaneous</u> and is<u> thermodynamically favored</u>.
Thus, when the reactants to the reaction are finished, the flow of current stops and ends. Therefore, when current is administered from another source, the reaction <u>changes its direction</u> and reagents that were previously consumed begin to occur. Therefore the condition for it to be <u>rechargeable</u> is that the reaction can go <u>forward or backward</u>, that is, it is <u>reversible</u>.
Answer:
<u>Explanation</u>:
<u>Number of molecules for
</u>

Atomic mass of Na + H + C + 3(O) = 22.99 + 1.008 + 12.01 + 3 × 16.00 = 84.00 g/mol



<u>Number of molecules for for
</u>

= Atomic mass of 3(Na) + P + 4(O)
= 3(22.99) + 30.97 + 4(16.00) = 163.94 g/mol


#1
- See H and C have shared their electrons so it's Covalent bonding
#2
Yes here we can see the dots and crosses clearly.
#3
It's Methane or CH_4
#4
There is no double bond