Answer:
Q = 1461.6 J
Explanation:
Given data:
Mass of ice = 36 g
Initial temperature = -20°C
Final temperature = 0°C
Amount of heat absorbed = ?
Solution:
specific heat capacity of ice is 2.03 j/g.°C
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = T2 - T1
ΔT = 0°C - (-20°C)
ΔT = 20°C
Q = 36 g ×2.03 j/g.°C×20°C
Q = 1461.6 J
Answer:
Hi.
The temperature is approximately zero degrees (0°C)
Explanation:
It is important to keep in mind that in the production of ice cream the decrease in the freezing point of the water present in the mixture is called the antifreeze power of the mixture. In ice cream, the freezing point decrease will be caused by each substance that is dissolved in the mixture: lactose, salts, sugars and any other substance. Each of these substances will contribute to the decrease in the freezing point of the mixture. The phase diagram attached in the file shows the sugar solutions in water. When a solution cools (point A), there comes a time when the freezing curve is reached (point B). At that moment ice begins to appear. As shown in the diagram this temperature is approximately zero degrees (0 ° C).
The mass will stay the same because of the conservation of mass
The equivalency point is at the point of the titration where the amount of titrant added neutralize the solution. When it’s a strong acid strong base titration, the equivalence point will be 7. When it is a weak acid strong base, the equivalence point it more basic (the exact number depends on what acid and base you use). And when it is a strong acid weak base, the equivalence number is more acid (the exact number depends on what acid and base you use). Hope this helps!
Its b because it explains it better than a waterfall does