D. She is not right, because there will be more successful collisions
between reactants in the concentrated solutions.
Elements in the same group share the same number of valence electrons.
Answer:
1. 2 M
2. 2 M
Explanation:
1. Determination of the final concentration.
Initial Volume (V₁) = 2 L
Initial concentration (C₁) = 6 M
Final volume (V₂) = 6 L
Final concentration (C₂) =?
The final concentration can be obtained as follow:
C₁V₁ = C₂V₂
6 × 2 = C₂ × 6
12 = C₂ × 6
Divide both side by 6
C₂ = 12 / 6
C₂ = 2 M
Therefore, the final concentration of the solution is 2 M
2. Determination of the final concentration.
Initial Volume (V₁) = 0.5 L
Initial concentration (C₁) = 12 M
Final volume (V₂) = 3 L
Final concentration (C₂) =?
The final concentration can be obtained as follow:
C₁V₁ = C₂V₂
12 × 0.5 = C₂ × 3
6 = C₂ × 3
Divide both side by 3
C₂ = 6 / 3
C₂ = 2 M
Therefore, the final concentration of the solution is 2 M
Particles in gaseous state have the greatest distance between them. This is because the gas particles have a greater kinetic energy because of which they move far apart from each other. If we take water, in steam (water vapor) the particles are far apart from each other when compared to liquid water and solid ice.
Of the gases listed, nitrogen, oxygen, water vapor, carbon dioxide, methane, nitrous oxide, and ozone are extremely important to the health of the Earth's biosphere. The table indicates that nitrogen and oxygen are the main components of the atmosphere by volume.
so the answer is D. Nitrogen and oxygen
hope this helps!