Answer:
1.73 M
Explanation:
We must first obtain the concentration of the concentrated acid from the formula;
Co= 10pd/M
Where
Co= concentration of concentrated acid = (the unknown)
p= percentage concentration of concentrated acid= 37.3%
d= density of concentrated acid = 1.19 g/ml
M= Molar mass of the anhydrous acid
Molar mass of anhydrous HCl= 1 +35.5= 36.5 gmol-1
Substituting values;
Co= 10 × 37.3 × 1.19/36.5
Co= 443.87/36.6
Co= 12.16 M
We can now use the dilution formula
CoVo= CdVd
Where;
Co= concentration of concentrated acid= 12.16 M
Vo= volume of concentrated acid = 35.5 ml
Cd= concentration of dilute acid =(the unknown)
Vd= volume of dilute acid = 250ml
Substituting values and making Cd the subject of the formula;
Cd= CoVo/Vd
Cd= 12.16 × 35.5/250
Cd= 1.73 M
Use the ideal gas formula-----> PV= nRT
P= 2.50 atm
V= 250 mL= 0.250 L
n= 0.100 moles
R= 0.0821 atmxL/molesxK
T= ?
T= PV/nR
T= (2.50 atm x 0.250 L) / (0.100 moles x 0.0821)= 76.1 K
Based on the standards of units conversion, to convert from micrometer to meter, we multiply by 10^-6.
Since we there is a square (10^2) to consider, then to convert from micrometer squared to meter squared, we will multiply by (10^-6)^2 as follows:
1.5 <span>μm2 = 1.5 x (10^-6)^2 = 1.5 x 10^-12 meter sqaures</span>
Answer:
The equilibrium concentrations are:
[SO2]=[NO2] = 0.563 M
[SO3]=[NO] = 1.04 M
Explanation:
<u>Given:</u>
Equilibrium constant K = 3.39
[SO2] = [NO2] = [SO3] = [NO] = 0.800 M
<u>To determine:</u>
The equilibrium concentrations of the above gases
Calculation:
Set-up an ICE table for the given reaction

I 0.800 0.800 0.800 0.800
C -x -x +x +x
E (0.800-x) (0.800-x) (0.800+x) (0.800+x)
The equilibrium constant is given as:
![Keq = \frac{[SO3][NO]}{[SO2][NO2]}=\frac{(0.800+x)^{2}}{(0.800-x)^{2}}](https://tex.z-dn.net/?f=Keq%20%3D%20%5Cfrac%7B%5BSO3%5D%5BNO%5D%7D%7B%5BSO2%5D%5BNO2%5D%7D%3D%5Cfrac%7B%280.800%2Bx%29%5E%7B2%7D%7D%7B%280.800-x%29%5E%7B2%7D%7D)

x = 0.2368 M
[SO2]=[NO2] = 0.800 -x = 0.800 - 0.2368 = 0.5632 M
[SO3]=[NO] = 0.800 +x = 0.800 + 0.2368 = 1.037 M