Answer:
1.84 m
Explanation:
For the small lead ball to be balanced at the tip of the vertical circle just before it is released, the reaction force , N equal the weight of the lead ball W + the centripetal force, F. This normal reaction ,N also equals the tension T in the string.
So, T = mg + mrω² = ma where m = mass of small lead ball, g = acceleration due to gravity = 9.8 m/s², r = length of rope = 1.10 m and ω = angular speed of lead ball = 3 rev/s = 3 × 2π rad/s = 6π rad/s = 18.85 rad/s and a = acceleration of normal force. So,
a = g + rω²
= 9.8 m/s² + 1.10 m × (18.85 rad/s)²
= 9.8 m/s² + 390.85 m/s²
= 400.65 m/s²
Now, using v² = u² + 2a(h₂ - h₁) where u = initial velocity of ball = rω = 1.10 m × 18.85 rad/s = 20.74 m/s, v = final velocity of ball at maximum height = 0 m/s (since the ball is stationary at maximum height), a = acceleration of small lead ball = -400.65 m/s² (negative since it is in the downward direction of the tension), h₁ = initial position of lead ball above the ground = 1.3 m and h₂ = final position of lead ball above the ground = unknown.
v² = u² + 2a(h₂ - h₁)
So, v² - u² = 2a(h₂ - h₁)
h₂ - h₁ = (v² - u²)/2a
h₂ = h₁ + (v² - u²)/2a
substituting the values of the variables into the equation, we have
h₂ = 1.3 m + ((0 m/s)² - (20.74 m/s)²)/2(-400.65 m/s²)
h₂ = 1.3 m + [-430.15 (m/s)²]/-801.3 m/s²
h₂ = 1.3 m + 0.54 m
h₂ = 1.84 m
28.1 grams is 0.0281 kg.
43.278 kg - 0.0281 kg = 43.2499 or if you round -> 43.250
<h2>
Answer:</h2>
1000N
<h2>
Explanation:</h2>
From Newton's third law of motion, for every action there is an equal and opposite reaction. In other words, when two bodies are in collision, the forces acting between these bodies are equal in magnitude and opposite in direction.
In the case presented in the question, the bodies are the <em>golf cart</em> and the<em> car. </em> During collision, the <em>golf car</em> strikes the car with a 1000N of force (that is the <em>action</em>). Consequential of this, though in the opposite direction, the <em>car </em>will apply an equal force of 1000N (that is the <em>reaction</em>) on the <em>golf car.</em>
<em></em>
Therefore the car applied a force of 1000N on the golf cart.
Answer:
I believe it's A frontal. Hope this can help
Explanation:
we know that,
linear speed = circumference × revolution per minute
linear speed of belt = 2πr × revolution per minute
now we will compute the linear speed of a belt for 2 inch pulley that is,
linear speed for 2 inch pulley = (2π×2)×( 3 revolutions per minute) ∵ r =2
= 4π × 3 revolution per minute (1)
again we will compute the linear speed of a belt for 8 inch pulley,
linear speed of 8 inch pulley = (2π×8) × (x revolution per minute) ∵ r =8
= 16π×x revolutions per minute (2)
As the linear speed is same for both pulleys. by comparing equations (1) and (2).
4π×3 = 16π×x
x = 3/4
Thus, the revolutions per minute for the 8 inch pulley is 3/4.